Trang chủ Lớp 6 Toán lớp 6 Đề thi đề kiểm tra Toán lớp 6 - Chân trời sáng tạo Đề thi học kì 1 – Đề số 1 Đề thi...

[Lời giải] Đề thi học kì 1 – Đề số 1 Đề thi đề kiểm tra Toán lớp 6: Phần I: Trắc nghiệm B B 3. C 4. D 5. B 6. A 7. C 8. C 9. B 10

Lời giải Lời giải Đề thi học kì 1 – Đề số 1 – Đề thi đề kiểm tra Toán lớp 6 Chân trời sáng tạo.

Câu hỏi/Đề bài:

Phần I: Trắc nghiệm

1. B

2. B

3. C

4. D

5. B

6. A

7. C

8. C

9. B

10. D

Câu 1

Hướng dẫn:

Sử dụng định nghĩa tập hợp số tự nhiên khác \(0\)

Cách giải:

Tập hợp số tự nhiên khác \(0\) là: \({\mathbb{N}^*} = \left\{ {1;2;3;4;…} \right\}\).

Chọn B.

Câu 2

Hướng dẫn:

Vận dụng kiến thức nhân hai lũy thừa cùng cơ số: \({a^m}.{a^n} = {a^{m + n}}\) \(\left( {m,n \in \mathbb{N}} \right)\)

Sử dụng kết quả: \({\left( {{a^m}} \right)^n} = {a^{m.n}}\)

Cách giải:

Ta có: \({8^2}{.2^3} = {\left( {{2^3}} \right)^2}{.2^3} = {2^6}{.2^3} = {2^{6 + 3}} = {2^9}\)

Chọn B.

Câu 3

Hướng dẫn:

Sử dụng dấu hiệu chia hết cho \(3\) và \(9\).

Cách giải:

Ta có:

\(9 + 0 + 0 = 9 \vdots 3\) và \( \vdots 9\), suy ra \(900 \vdots 3;900 \vdots 9\).

\(1 + 8 + 0 = 9 \vdots 3\) và \( \vdots 9\), suy ra \(180 \vdots 3;180 \vdots 9\).

\(9 + 3 = 12 \vdots 3\) nhưng \(9 + 3 = 12\cancel{ \vdots }9\), suy ra \(93 \vdots 3;93\cancel{ \vdots }9\).

\(7 + 2 + 9 = 18 \vdots 3\) và \( \vdots 9\), suy ra \(729 \vdots 3;729 \vdots 9\).

Chọn C.

Câu 4

Hướng dẫn:

Tìm ước chung thông qua ước chung lớn nhất của hai số tự nhiên.

Cách giải:

Ta có:

Suy ra ƯCLN\(\left( {120,400} \right) = {2^3}.5 = 8.5 = 40\) \( \Rightarrow \)ƯC\(\left( {120,400} \right) = \)Ư\(\left( {40} \right) = \left\{ {1;2;4;5;8;10;20;40} \right\}\).

Vậy có \(8\) ước chung của \(120\) và \(400\).

Chọn D.

Câu 5

Hướng dẫn:

Vận dụng quy tắc bỏ dấu ngoặc khi thực hiện phép tính.

Cách giải:

Ta thực hiện phép tính bỏ ngoặc có dấy “-” ở trước: \(\left( {a + b} \right) – \left( {c – d} \right) = a + b – c + d\)

Chọn B.

Câu 6

Hướng dẫn:

Căn cứ vào yêu cầu đề bài, phân tích và đưa bài toán về thực hiện phép cộng với các số nguyên cho trước.

Cách giải:

Sau khi lên \(7\) tầng và xuống \(12\) thì thang máy dừng lại ở tầng:

\(3 + 7 + \left( { – 12} \right) = – 2\)

Vậy thang máy dừng lại ở tầng hầm số \(2\).

Chọn A.

Câu 7

Hướng dẫn:

Nhận biết được hình tam giác đều.

Cách giải:

– Có 7 tam giác đều cạnh 1.

– Có 1 tam giác đều cạnh 2.

Vậy có \(7 + 1 = 8\) (tam giác đều)

Chọn C.

Câu 8

Hướng dẫn:

Quan sát biểu đồ để xác định dân số của khu vực Tây Nguyên và so sánh.

Cách giải:

Quan sát biểu đồ ta thấy:

Kon Tum: 535 000 người

Gia Lai: 1 456 500 người

Đắk Lắk: 1 919 200 người

Đắk Nông: 645 400 người

Lâm Đồng: 1 312 900 người

Vậy tỉnh Đắk Lắk có số dân nhiều nhất.

Chọn C.

Câu 9

Hướng dẫn:

Vận dụng công thức tính diện tích hình thoi có độ dài hai đường chéo lần lượt là \(m,n\) là \(S = \dfrac{1}{2}m.n\)

Cách giải:

Diện tích của hình thoi là: \(\dfrac{{6.3}}{2} = 9\left( {d{m^2}} \right)\)

Chọn B.

Câu 10

Hướng dẫn:

Sử dụng lý thuyết biểu đồ cột kép.

Cách giải:

Để biểu diễn học lực của học sinh lớp 6A, 6B ta có thể sử dụng biểu đồ cột kép.

Chọn D.

Phần II: Tự luận

Bài 1

Hướng dẫn:

a) Thực hiện nhóm các số với nhau để tạo thành các số tròn chục, tròn trăm,… để thuận tiện tính toán

b) Vận dụng kiến thức lũy thừa với số mũ tự nhiên

Biểu thức có ngoặc, ta thực hiện theo thứ tự: \(\left( {\,\,\,} \right) \to \left[ {\,\,\,} \right] \to \left\{ {\,\,\,} \right\}\)

Vận dụng quy tắc bỏ ngoặc.

Cách giải:

a) \(25.69 + 31.25 – 150\)

\(\begin{array}{l} = 25.\left( {69 + 31} \right) – 150\\ = 25.100 – 150\\ = 2500 – 150\\ = 2350\end{array}\)

b) \(198:\left[ {130 – {{\left( {27 – 19} \right)}^2}} \right] + {2021^0}\)

\(\begin{array}{l} = 198:\left( {130 – {8^2}} \right) + 1\\ = 198:\left( {130 – 64} \right) + 1\\ = 198:66 + 1\\ = 3 + 1\\ = 4\end{array}\)

Bài 2

Hướng dẫn:

a) Thực hiện các phép toán với số tự nhiên.

b) Vận dụng kiến thức lũy thừa với số mũ tự nhiên

Hai lũy thừa cùng cơ số bằng nhau khi số mũ của chúng bằng nhau.

Cách giải:

a) \(140:\left( {x – 8} \right) = 7\)

\(\begin{array}{l}x – 8 = 140:7\\x – 8 = 20\\x = 20 + 8\\x = 28\end{array}\)

Vậy \(x = 28\)

b) \({4^{x + 3}} + {4^x} = 1040\)

\(\begin{array}{l}{4^x}{.4^3} + {4^x} = 1040\\{4^x}.\left( {{4^3} + 1} \right) = 1040\\{4^x}.65 = 1040\\{4^x} = 16\\{4^x} = {4^2}\\x = 2\end{array}\)

Vậy \(x = 2\).

Bài 3

Hướng dẫn:

Gọi số học sinh đi tham quan là \(x\,\,\left( {x \in {\mathbb{N}^*},\,\,1200 \le x \le 1500} \right)\)

Từ đề bài, suy ra \(\left( {x + 9} \right) \in {\rm{BC}}\left( {30;35;45} \right)\)

Áp dụng các bước tìm bội chung nhỏ nhất, tìm được \({\rm{BCNN}}\left( {30;35;45} \right)\), suy ra \({\rm{BC}}\left( {30;35;45} \right)\)

Kết hợp điều kiện và đưa ra kết luận.

Cách giải:

Gọi số học sinh đi tham quan là \(x\,\,\left( {x \in {\mathbb{N}^*},\,\,1200 \le x \le 1500} \right)\)

Theo đề bài, ta có: \(\left\{ \begin{array}{l}\left( {x – 21} \right)\,\, \vdots \,\,30\\\left( {x – 26} \right)\,\, \vdots \,\,35\\\left( {x + 9} \right)\,\, \vdots \,\,45\end{array} \right.\,\, \Rightarrow \left\{ \begin{array}{l}\left( {x – 21 + 30} \right) = \left( {x + 9} \right)\,\, \vdots \,\,30\\\left( {x – 26 + 35} \right) = \left( {x + 9\,} \right)\, \vdots \,\,35\\\left( {x + 9} \right)\,\, \vdots \,\,45\end{array} \right.\)

\( \Rightarrow \left( {x + 9} \right) \in {\rm{BC}}\left( {30;35;45} \right)\)

Ta có: \(\left\{ \begin{array}{l}30 = 2.3.5\\35 = 5.7\\45 = {3^2}.5\end{array} \right. \Rightarrow {\rm{BCNN}}\left( {30;35;45} \right) = {2.3^2}.5.7 = 630\)

\( \Rightarrow \left( {x + 9} \right) \in {\rm{BC}}\left( {630} \right) = \left\{ {0;630;1260;…} \right\}\)

\( \Rightarrow x \in \left\{ {621;1251;…} \right\}\)

Vì \(1200 \le x \le 1500 \Rightarrow x = 1251\)

Vậy có 1251 học sinh đi tham quan.

Bài 4

Hướng dẫn:

a) Sử dụng công thức tính diện tích hình chữ nhật có độ dài hai cạnh lần lượt là \(a,b\) thì \(S = a.b\), tính được diện tích của trại chăn nuôi.

Sử dụng công thức tính diện tích hình thang vuông có độ dài hai đáy là \(a,b\) và chiều cao tương ứng với đáy \(a\) là \(h\) thì \(A = \dfrac{{\left( {a + b} \right).h}}{2}\)

\( \Rightarrow \) Diện tích của bãi cỏ = diện tích của hình thàng vuông – diện tích của trại chăn nuôi.

b) Thực hiện phép chia, so sánh và đưa ra kết luận.

Cách giải:

a) Diện tích của trại chăn nuôi là: \(30.12 = 360\left( {{m^2}} \right)\)

Diện tích của hình thang vuông là: \(\dfrac{{\left( {75 + 82} \right).54}}{2} = 4239\left( {{m^2}} \right)\)

Diện tích của bãi cỏ là: \(4239 – 360 = 3879\left( {{m^2}} \right)\)

b) Ta có: \(3879:120 = 32\) (dư 39)

Vậy cần \(32 + 1 = 33\) túi hạt giống để gieo hết bãi cỏ.

Bài 5

Hướng dẫn:

Vận dụng phương pháp đánh giá từng vế của phương trình để tìm \(x,y,z\)

Cách giải:

Vì \({2^x},{3^y},{5^z} \ge 1,\forall x,y,z \in \mathbb{N}\)

\( \Rightarrow {5^z} < 156 < 625 = {5^4}\) \( \Rightarrow z < 4\)hay \(z \le 3\)

Với \(z = 2 \Rightarrow {2^x} + {3^y} + {5^2} = 156 \Rightarrow {2^x} + {3^y} = 131\)

Vì \(x \le y \le z \Rightarrow x \le y \le 2 \Rightarrow {2^x} + {3^y} \le {2^2} + {3^2} = 13\) (loại)

Vậy \(z = 3 \Rightarrow {2^x} + {3^y} + {5^3} = 156 \Rightarrow {2^x} + {3^y} = 156 – 125 = 31\)

Ta có: \(x \le y \le 3\)

Vì \({3^y} < 31 < 81 = {3^4} \Rightarrow y < 4\) hay \(y \le 3\)

Với \(y = 2 \Rightarrow {2^x} + {3^2} = 31 \Rightarrow {2^x} = 31 – 9 = 22\) (loại)

Với \(y = 1 \Rightarrow {2^x} + {3^1} = 31 \Rightarrow {2^x} = 31 – 3 = 28\) (loại)

Với \(y = 0 \Rightarrow {2^x} + {3^0} = 31 \Rightarrow {2^x} = 31 – 1 = 30\) (loại)

Với \(y = 3 \Rightarrow {2^x} + {3^3} = 31 \Rightarrow {2^x} = 31 – 27 = 4 = {2^2}\)\( \Rightarrow x = 2\)

Vậy \(x = 2;y = 3;z = 3\)