Giải chi tiết Câu 3 Bài 62: So sánh hai phân số khác mẫu số (trang 24) – SGK Toán 4 Cánh diều. Gợi ý: Muốn so sánh các phân số khác mẫu số, ta có thể quy đồng mẫu số các phân số đó.
Câu hỏi/Đề bài:
Viết các phân số sau theo thứ tự từ lớn đến bé:
a) $\frac{2}{3};\frac{{16}}{{21}}$ và $\frac{3}{7}$
b) $\frac{2}{9};\frac{4}{{27}}$ và $\frac{1}{3}$
c) $\frac{{11}}{{28}};\frac{3}{4}$ và $\frac{2}{7}$
Hướng dẫn:
Muốn so sánh các phân số khác mẫu số, ta có thể quy đồng mẫu số các phân số đó, rồi so sánh các tử số của phân số mới.
Lời giải:
a) $\frac{2}{3} = \frac{{2 \times 7}}{{3 \times 7}} = \frac{{14}}{{21}}$ ; Giữ nguyên phân số $\frac{{16}}{{21}}$
$\frac{3}{7} = \frac{{3 \times 3}}{{7 \times 3}} = \frac{9}{{21}}$
Vì $\frac{{16}}{{21}} > \frac{{14}}{{21}} > \frac{9}{{21}}$ nên các phân số đã cho xếp theo thứ tự từ lớn đến bé là: $\frac{{16}}{{21}}$; $\frac{2}{3}$ ; $\frac{3}{7}$
b) $\frac{2}{9} = \frac{{2 \times 3}}{{9 \times 3}} = \frac{6}{{27}}$, Giữ nguyên phân số $\frac{4}{{27}}$
$\frac{1}{3} = \frac{{1 \times 9}}{{3 \times 9}} = \frac{9}{{27}}$
Vì $\frac{9}{{27}} > \frac{6}{{27}} > \frac{4}{{27}}$ nên các phân số xếp theo thứ tự từ lớn đến bé là $\frac{1}{3}$ ; $\frac{2}{9}$ ; $\frac{4}{{27}}$
c) Giữ nguyên phân số $\frac{{11}}{{28}}$
$\frac{3}{4} = \frac{{3 \times 7}}{{4 \times 7}} = \frac{{21}}{{28}}$ ; $\frac{2}{7} = \frac{{2 \times 4}}{{7 \times 4}} = \frac{8}{{28}}$
Vì $\frac{{21}}{{28}} > \frac{{11}}{{28}} > \frac{8}{{28}}$ nên các phân số đã cho xếp theo thứ tự từ lớn đến bé là $\frac{3}{4}$ ; $\frac{{11}}{{28}}$ ; $\frac{2}{7}$