Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Câu hỏi Hoạt động 3 trang 69 Toán 12 Kết nối tri...

Câu hỏi Hoạt động 3 trang 69 Toán 12 Kết nối tri thức: Trong không gian Oxyz, cho hai vectơ → a = x;y;z và → b = x’;y’;z’ . a) Giải thích vì sao → i

Giải Câu hỏi Hoạt động 3 trang 69 SGK Toán 12 Kết nối tri thức – Bài 8. Biểu thức tọa độ của các phép toán vectơ. Hướng dẫn: Sử dụng kiến thức về công thức xác định tích vô hướng của hai vectơ trong không gian để tính.

Câu hỏi/Đề bài:

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x’;y’;z’} \right)\).

a) Giải thích vì sao \(\overrightarrow i .\overrightarrow i = 1\) và \(\overrightarrow i .\overrightarrow j = \overrightarrow i .\overrightarrow k = 0\).

b) Sử dụng biểu diễn \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) để tính các tích vô hướng \(\overrightarrow a .\overrightarrow i ;\overrightarrow a .\overrightarrow j \) và \(\overrightarrow a .\overrightarrow k \).

c) Sử dụng biểu diễn \(\overrightarrow b = x’\overrightarrow i + y’\overrightarrow j + z’\overrightarrow k \) để tính các tích vô hướng \(\overrightarrow a .\overrightarrow b \).

Hướng dẫn:

Sử dụng kiến thức về công thức xác định tích vô hướng của hai vectơ trong không gian để tính: Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Tích vô hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là một số, kí hiệu là \(\overrightarrow a \cdot \overrightarrow b \), được xác định bởi công thức sau: \(\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Sử dụng kiến thức về tích vô hướng của hai vectơ trong không gian để tính: Cho hai vectơ \(\overrightarrow a \), \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Khi đó, \(\overrightarrow a \bot \overrightarrow b \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = 0\)

Lời giải:

a) Ta có: \(\overrightarrow i .\overrightarrow i = \left| {\overrightarrow i } \right|.\left| {\overrightarrow i } \right|.\cos {0^0} = {\left| {\overrightarrow i } \right|^2} = 1\)

Vì \(\overrightarrow i \bot \overrightarrow j \Rightarrow \overrightarrow i .\overrightarrow j = 0;\overrightarrow i \bot \overrightarrow k \Rightarrow \overrightarrow i .\overrightarrow k = 0\)

b) Ta có: \(\overrightarrow a .\overrightarrow i = \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right)\overrightarrow i = x.{\overrightarrow i ^2} + y\overrightarrow {.j} .\overrightarrow i + z.\overrightarrow k .\overrightarrow i = x\)

\(\overrightarrow a .\overrightarrow j = \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right)\overrightarrow j = x\overrightarrow i .\overrightarrow j + y{\overrightarrow j ^2} + z\overrightarrow k .\overrightarrow j = y\)

\(\overrightarrow a .\overrightarrow k = \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right).\overrightarrow k = x\overrightarrow i .\overrightarrow k + y\overrightarrow j .\overrightarrow k + z.{\overrightarrow k ^2} = z\)

c) Ta có: \(\overrightarrow a .\overrightarrow b = \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right).\left( {x’\overrightarrow i + y’\overrightarrow j + z’\overrightarrow k } \right)\)

\( = xx'{\overrightarrow i ^2} + xy’.\overrightarrow i .\overrightarrow j + xz’\overrightarrow i .\overrightarrow k + x’y.\overrightarrow i .\overrightarrow j + yy’.{\overrightarrow j ^2} + yz’\overrightarrow j .\overrightarrow k + zx’.\overrightarrow k .\overrightarrow i + zy’.\overrightarrow k \overrightarrow j + zz'{\overrightarrow k ^2}\)

Mà \(\overrightarrow i .\overrightarrow k = 0;\overrightarrow i .\overrightarrow j = 0;\overrightarrow j .\overrightarrow k = 0\) nên: \(\overrightarrow a .\overrightarrow b = xx’ + yy’ + zz’\)