Hướng dẫn giải Câu hỏi Hoạt động 3 trang 23 SGK Toán 12 Kết nối tri thức – Bài 3. Đường tiệm cận của đồ thị hàm số. Gợi ý: Sử dụng kiến thức về giới hạn của hàm số để tính giới hạn.
Câu hỏi/Đề bài:
Cho hàm số \(y = f\left( x \right) = x – 1 + \frac{2}{{x + 1}}\) có đồ thị (C) và đường thẳng \(y = x – 1\) như Hình 1.24.
a) Với \(x > – 1\), xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng \(y = x – 1\). Có nhận xét gì về khoảng cách MH khi \(x \to + \infty \)?
b) Chứng tỏ rằng \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) – \left( {x – 1} \right)} \right] = 0\). Tính chất này thể hiện trên Hình 1.24 như thế nào?
Hướng dẫn:
Sử dụng kiến thức về giới hạn của hàm số để tính giới hạn.
Lời giải:
a) Nhìn vào đồ thị ta thấy, khi \(x \to + \infty \) thì khoảng cách MH tiến tới 0.
b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) – \left( {x – 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x – 1 + \frac{2}{{x + 1}} – \left( {x – 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{2}{x}}}{{1 + \frac{1}{x}}} = 0\)
Tính chất này được thể hiện trong Hình 1.24 là: Khoảng cách từ điểm M của đồ thị hàm số (C) đến đường thẳng \(y = x – 1\) tiến đến 0 khi \(x \to + \infty \).