Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \. Lời giải Giải bài tập 5 trang 90 SGK Toán 12 tập 2 – Kết nối tri thức – Bài tập ôn tập cuối năm. Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng? A….
Đề bài/câu hỏi:
Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng?
A. \(\int {f\left( x \right)dx} = 2x + C\).
B. \(\int {f\left( x \right)dx} = {x^2} + 3x + C\).
C. \(\int {f\left( x \right)dx} = {x^3} + 3x + C\).
D. \(\int {f\left( x \right)dx} = \frac{{{x^3}}}{3} + 3x + C\).
Hướng dẫn:
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) – g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx – \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm số lũy thừa để tính:
\(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne – 1} \right)\)
Lời giải:
\(\int {f\left( x \right)dx} = \int {\left( {{x^2} + 3} \right)dx} = \frac{{{x^3}}}{3} + 3x + C\)
Chọn D