Sử dụng kiến thức về độ dài đoạn thẳng trong không gian để tính: Nếu \(A\left( {{x_A};{y_A};{z_A}} \right)\) và \(B\left( {{x_B};{y_B};{z_B}} \right)\. Phân tích, đưa ra lời giải Giải bài tập 2.24 trang 72 SGK Toán 12 tập 1 – Kết nối tri thức – Bài 8. Biểu thức tọa độ của các phép toán vectơ. Trong không gian, xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên…
Đề bài/câu hỏi:
Trong không gian, xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên biển, mặt phẳng (Oxy) trùng với mặt biển (được coi là phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời (H.2.52). Đơn vị đo trong không gian Oxyz lấy theo kilômét. Một chiếc ra đa đặt tại giàn khoan có phạm vi theo dõi là 30km. Hỏi ra đa có thể phát hiện được một chiếc tàu thám hiểm có tọa độ là (25; 15; -10) đối với hệ tọa độ nói trên hay không? Hãy giải thích vì sao.
Hướng dẫn:
Sử dụng kiến thức về độ dài đoạn thẳng trong không gian để tính: Nếu \(A\left( {{x_A};{y_A};{z_A}} \right)\) và \(B\left( {{x_B};{y_B};{z_B}} \right)\) thì \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} – {x_A}} \right)}^2} + {{\left( {{y_B} – {y_A}} \right)}^2} + {{\left( {{z_B} – {z_A}} \right)}^2}} \)
Lời giải:
Vì \(\overrightarrow {OM} \left( {25;15; – 10} \right) \Rightarrow OM = \sqrt {{{25}^2} + {{15}^2} + {{\left( { – 10} \right)}^2}} = 5\sqrt {38} > 30\)
Do đó, ra đa không thể phát hiện được một chiếc tàu thám hiểm có tọa độ là (25; 15; -10) đối với hệ tọa độ nói trên.