Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 1.5 trang 13 Toán 12 tập 1 – Kết nối...

Bài tập 1.5 trang 13 Toán 12 tập 1 – Kết nối tri thức: Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số N t = 25t + 10/t + 5

Sử dụng kiến thức về định lí về tính đồng biến của hàm số để chứng minh: Cho hàm số \(y = f\left( x \right)\. Phân tích, đưa ra lời giải Giải bài tập 1.5 trang 13 SGK Toán 12 tập 1 – Kết nối tri thức – Bài 1. Tính đơn điệu và cực trị của hàm số. Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm…

Đề bài/câu hỏi:

Giả sử số dân của một thị trấn sau t năm kể từ năm 2000 được mô tả bởi hàm số \(N\left( t \right) = \frac{{25t + 10}}{{t + 5}},t \ge 0\), trong đó N(t) được tính bằng nghìn người.a) Tính số dân của thị trấn đó vào các năm 2000 và 2015. b) Tính đạo hàm N’(t) và \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right)\). Từ đó giải thích tại sao dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua một ngưỡng nào đó.

Hướng dẫn:

Sử dụng kiến thức về định lí về tính đồng biến của hàm số để chứng minh: Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên khoảng K. Nếu \(f’\left( x \right) > 0\) với mọi \(x \in K\) thì hàm số \(f\left( x \right)\) đồng biến trên khoảng K.

Lời giải:

a) Dân số của thị trấn đó vào năm 2000 là: \(N\left( 0 \right) = \frac{{25.0 + 10}}{{0 + 5}} = \frac{{10}}{5} = 2\) (nghìn người)

Dân số của thị trấn đó vào năm 2015 là: \(N\left( {15} \right) = \frac{{25.15 + 10}}{{15 + 5}} = 19,25\) (nghìn người)

b) Ta có: , \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{25t + 10}}{{t + 5}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{25 + \frac{{10}}{t}}}{{1 + \frac{5}{t}}} = 25\)

Vì \(\mathop {\lim }\limits_{t \to + \infty } N\left( t \right) = 25\) và nên dân số của thị trấn đó luôn tăng nhưng sẽ không vượt qua ngưỡng 25 nghìn người.