Trang chủ Lớp 12 Toán lớp 12 SGK Toán 12 - Chân trời sáng tạo Câu hỏi Khám phá 4 trang 8 Toán 12 Chân trời sáng...

Câu hỏi Khám phá 4 trang 8 Toán 12 Chân trời sáng tạo: Cho hàm số F x = ln | x | với x ne 0. a) Tìm đạo hàm của F x . b) Từ đó, tìm ∫ 1/xdx

Giải chi tiết Câu hỏi Khám phá 4 trang 8 SGK Toán 12 Chân trời sáng tạo – Bài 1. Nguyên hàm. Tham khảo: Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\).

Câu hỏi/Đề bài:

Cho hàm số \(F\left( x \right) = \ln \left| x \right|\) với \(x \ne 0\).

a) Tìm đạo hàm của \(F\left( x \right)\).

b) Từ đó, tìm \(\int {\frac{1}{x}dx} \).

Hướng dẫn:

a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\). Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { – x} \right)\), sau đó tính đạo hàm của \(F\left( x \right)\) trong từng trường hợp trên.

b) Từ câu a, rút ra kết luận.

Lời giải:

a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\).

Đạo hàm của \(F\left( x \right)\) trên \(\left( {0; + \infty } \right)\) là: \(F’\left( x \right) = \left( {\ln x} \right)’ = \frac{1}{x}\).

Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { – x} \right)\).

Đạo hàm của \(F\left( x \right)\) trên \(\left( { – \infty ;0} \right)\) là: \(F’\left( x \right) = \left( {\ln x} \right)’ = \frac{1}{x}\).

Vậy ta có đạo hàm của \(F\left( x \right)\) trên \(\mathbb{R} \setminus \left\{ 0 \right\}\) là \(F’\left( x \right) = \frac{1}{x}\).

b) Từ câu a, ta có \(F\left( x \right) = \ln \left| x \right|\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x}\).

Do đó \(\int {\frac{1}{x}dx = \ln \left| x \right| + C} \)