Ý a: Áp dụng công thức tính nguyên hàm của hàm lũy thừa và hàm lượng giác sôsin. Ý b. Hướng dẫn trả lời Giải bài 4.6 trang 8 sách bài tập toán 12 – Kết nối tri thức – . Tìm: a) (int {left( {2cos x + frac{3}{{sqrt x }}} right)} dx);…
Đề bài/câu hỏi:
Tìm:
a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)} dx\); b) \(\int {\left( {3\sqrt x – 4\sin x} \right)} {\rm{ }}dx\).
Hướng dẫn:
Ý a: Áp dụng công thức tính nguyên hàm của hàm lũy thừa và hàm lượng giác sôsin.
Ý b: Áp dụng công thức tính nguyên hàm của hàm lũy thừa và hàm lượng giác sin.
Lời giải:
a) Ta có \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)} dx = 2\int {\cos x} dx + 3\int {\frac{1}{{\sqrt x }}} dx = 2\sin x + 6\sqrt x + C\).
b) Ta có \(\int {\left( {3\sqrt x – 4\sin x} \right)} {\rm{ }}dx = 3\int {{x^{\frac{1}{2}}}dx – 4\int {\sin x{\rm{ }}dx} } \)\( = 3 \cdot \frac{{{x^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}} + 4\cos x + C = 2x\sqrt x + 4\cos x + C\).