‒ Sử dụng quy tắc hình hộp. Giải chi tiết Giải bài 4 trang 63 sách bài tập toán 12 – Chân trời sáng tạo – . Cho hình hộp \(ABCD.A’B’C’D’\) có \(AC’\) và \(A’C\) cắt nhau tại \(O\). Cho biết \(AO = a\). Tính theo \(a\…
Đề bài/câu hỏi:
Cho hình hộp \(ABCD.A’B’C’D’\) có \(AC’\) và \(A’C\) cắt nhau tại \(O\). Cho biết \(AO = a\). Tính theo \(a\) độ dài các vectơ:
a) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} \);
b) \(\overrightarrow {C’B’} + \overrightarrow {C’D’} + \overrightarrow {A’A} \).
Hướng dẫn:
‒ Sử dụng quy tắc hình hộp.
Lời giải:
a) Theo quy tắc hình hộp ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} = \overrightarrow {AC’} \).
Do đó \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA’} } \right| = \left| {\overrightarrow {AC’} } \right| = AC’ = 2AO = 2{\rm{a}}\).
b) Theo quy tắc hình hộp ta có: \(\overrightarrow {C’B’} + \overrightarrow {C’D’} + \overrightarrow {A’A} = \overrightarrow {C’B’} + \overrightarrow {C’D’} + \overrightarrow {C’C} = \overrightarrow {C’A} \).
Do đó \(\left| {\overrightarrow {C’B’} + \overrightarrow {C’D’} + \overrightarrow {A’A} } \right| = \left| {\overrightarrow {C’A} } \right| = C’A = 2AO = 2{\rm{a}}\).