Trang chủ Lớp 12 Toán lớp 12 SBT Toán 12 - Cánh diều Bài 16 trang 13 SBT toán 12 – Cánh diều: Cho hàm...

Bài 16 trang 13 SBT toán 12 – Cánh diều: Cho hàm số y = f x có đạo hàm trên \mathbbR và đồ thị hàm số y = f’ x như Hình 7

Dựa vào đồ thị hàm số \(y = f’\left( x \right)\), lập bảng xét dấu đạo hàm của hàm số \(y = f\left( x \right)\). Lời giải Giải bài 16 trang 13 sách bài tập toán 12 – Cánh diều – Bài 1. Tính đơn điệu của hàm số. Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\…

Đề bài/câu hỏi:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f’\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là:

A. 4.

B. 3.

C. 2.

D. 1.

Hướng dẫn:

Dựa vào đồ thị hàm số \(y = f’\left( x \right)\), lập bảng xét dấu đạo hàm của hàm số \(y = f\left( x \right)\), từ đó xác định số điểm cực trị của hàm số \(y = f\left( x \right)\).

Lời giải:

Do hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) nên hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Căn cứ vào đồ thị hàm số \(y = f’\left( x \right)\), ta có:

\(f’\left( x \right) = 0\) khi \(x = – 3,x = 0,x = 2\). Dựa vào vị trí của đồ thị hàm số \(y = f’\left( x \right)\) so với trục hoành, ta có bảng xét dấu \(f’\left( x \right)\) như sau:

Hàm số đạt cực đại tại \(x = 0\). Vậy hàm số có 1 cực trị.

Chọn D.