Hướng dẫn giải Hoạt động 2 Bài 4. Phương trình lượng giác cơ bản – SGK Toán 11 Kết nối tri thức. Tham khảo: Nghiệm của phương trình \(\sin x = \frac{1}{2}\) là hoành độ các giao điểm của đường thẳng \(y = \frac{1}{2}\.
Câu hỏi/Đề bài:
a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng \(\left[ {0;2\pi } \right)\)
b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho.
Hướng dẫn:
Nghiệm của phương trình \(\sin x = \frac{1}{2}\) là hoành độ các giao điểm của đường thẳng \(y = \frac{1}{2}\) và đồ thị hàm số \(y = \sin x\)
Lời giải:
a) Từ Hình 1.19, ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đường tròn tại 2 điểm M, M’. Ta có nghiệm của phương trình là: \(\frac{\pi }{6}, – \frac{{5\pi }}{6}\)
b) Vì hàm số \(\sin x\) tuần hoàn với chu kỳ là \(2\pi \), ta có công thức nghiệm của phương trình là: \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \pi – \frac{\pi }{6} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)