Trang chủ Lớp 11 Toán lớp 11 SGK Toán 11 - Kết nối tri thức Bài 8.24 trang 80 Toán 11 tập 2 – Kết nối tri...

Bài 8.24 trang 80 Toán 11 tập 2 – Kết nối tri thức: Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau: A: “Ở lần gieo thứ nhất

Với hai biến cố A và B, nếu \(P\left( {AB} \right) \ne P\left( A \right). P\left( B \right)\) thì A và B không độc lập. Lời giải Bài 8.24 trang 80 SGK Toán 11 tập 2 – Kết nối tri thức – Bài tập cuối Chương 8. Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:…

Đề bài/câu hỏi:

Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:

A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;

B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”

C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”

D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.

Chứng tỏ rằng các cặp biến cố A và C; B và C, C và D không độc lập.

Hướng dẫn:

Với hai biến cố A và B, nếu \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) thì A và B không độc lập.

Lời giải:

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.