Với hai biến cố A và B, nếu \(P\left( {AB} \right) \ne P\left( A \right). P\left( B \right)\) thì A và B không độc lập. Giải chi tiết Bài 8.12 trang 78 SGK Toán 11 tập 2 – Kết nối tri thức – Bài 30. Công thức nhân xác suất cho hai biến cố độc lập. Một thùng đựng 60 tấm thẻ cùng loại được đánh số từ 1 đến 60….
Đề bài/câu hỏi:
Một thùng đựng 60 tấm thẻ cùng loại được đánh số từ 1 đến 60. Rút ngẫu nhiên một tấm thẻ trong thùng. Xét hai biến cố sau:
A: “Số ghi trên tấm thẻ là ước của 60” và B: “Số ghi trên tấm thẻ là ước của 48”.
Chứng tỏ rằng A và B là hai biến cố không độc lập.
Hướng dẫn:
Với hai biến cố A và B, nếu \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) thì A và B không độc lập.
Lời giải:
A = {1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60}
B = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}
\( \Rightarrow \) AB = {1; 2; 3; 4; 6; 12}
Ta có \(P\left( A \right) = \frac{{12}}{{60}} = \frac{1}{5};P\left( B \right) = \frac{{10}}{{60}} = \frac{1}{6};P\left( {AB} \right) = \frac{6}{{60}} = \frac{1}{{10}}\)
Mặt khác \(P\left( A \right).P\left( B \right) = \frac{1}{5}.\frac{1}{6} = \frac{1}{{30}}\)
Vì \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) nên hai biến cố A và B không độc lập.