Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\). Lời giải bài tập, câu hỏi Bài 2 trang 85 SGK Toán 11 tập 1 – Chân trời sáng tạo – Bài tập cuối chương 3. Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ……
Đề bài/câu hỏi:
Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + … + \frac{1}{{{4^n}}} + …\) bằng:
A. \(\frac{3}{4}\).
B. \(\frac{5}{4}\).
C. \(\frac{4}{3}\).
D. \(\frac{6}{5}\).
Hướng dẫn:
Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\): \(S = {u_1} + {u_2} + … + {u_n} + … = \frac{{{u_1}}}{{1 – q}}\)
Lời giải:
Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{4}\) nên: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + … + \frac{1}{{{4^n}}} + … = \frac{1}{{1 – \frac{1}{4}}} = \frac{4}{3}\)
Chọn C.