Sử dụng các công thức nghiệm của phương trình lượng giác. Hướng dẫn cách giải/trả lời Bài 12 trang 41 SGK Toán 11 tập 1 – Cánh diều – Bài tập cuối chương 1. Giải các phương trình sau:…
Đề bài/câu hỏi:
Giải các phương trình sau:
a) \(\sin \left( {2x – \frac{\pi }{6}} \right) = – \frac{{\sqrt 3 }}{2}\)
b) \(\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\)
c) \(\sin 3x – \cos 5x = 0\)
d) \({\cos ^2}x = \frac{1}{4}\)
e) \(\sin x – \sqrt 3 \cos x = 0\)
f) \(\sin x + \cos x = 0\)
Hướng dẫn:
Sử dụng các công thức nghiệm của phương trình lượng giác
Lời giải:
a)
\(\begin{array}{l}\sin \left( {2x – \frac{\pi }{6}} \right) = – \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \sin \left( {2x – \frac{\pi }{6}} \right) = \sin \left( { – \frac{\pi }{3}} \right)\end{array}\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x – \frac{\pi }{6} = – \frac{\pi }{3} + k2\pi \\2x – \frac{\pi }{6} = \pi + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = – \frac{\pi }{6} + k2\pi \\2x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = – \frac{\pi }{{12}} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
b) \(\begin{array}{l}\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \cos \frac{\pi }{3}\end{array}\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{{3x}}{2} + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\\frac{{3x}}{2} + \frac{\pi }{4} = \frac{{ – \pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k4\pi }}{3}\\x = \frac{{ – 7\pi }}{{18}} + \frac{{k4\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
c)
\(\begin{array}{l}\sin 3x – \cos 5x = 0\\ \Leftrightarrow \sin 3x = \cos 5x\\ \Leftrightarrow \cos 5x = \cos \left( {\frac{\pi }{2} – 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} – 3x + k2\pi \\5x = – \left( {\frac{\pi }{2} – 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x = – \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x = – \frac{\pi }{4} + k\pi \end{array} \right.\end{array}\)
d)
\(\begin{array}{l}{\cos ^2}x = \frac{1}{4}\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x = – \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \cos \frac{\pi }{3}\\\cos x = \cos \frac{{2\pi }}{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = – \frac{\pi }{3} + k2\pi \end{array} \right.\\\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x = – \frac{{2\pi }}{3} + k2\pi \end{array} \right.\end{array} \right.\end{array}\)
e)
\(\begin{array}{l}\sin x – \sqrt 3 \cos x = 0\\ \Leftrightarrow \frac{1}{2}\sin x – \frac{{\sqrt 3 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{3}.\sin x – \sin \frac{\pi }{3}.\cos x = 0\\ \Leftrightarrow \sin \left( {x – \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow \sin \left( {x – \frac{\pi }{3}} \right) = \sin 0\\ \Leftrightarrow x – \frac{\pi }{3} = k\pi ;k \in Z\\ \Leftrightarrow x = \frac{\pi }{3} + k\pi ;k \in Z\end{array}\)
f)
\(\begin{array}{l}\sin x + \cos x = 0\\ \Leftrightarrow \frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{4}.\sin x + \sin \frac{\pi }{4}.\cos x = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 0\\ \Leftrightarrow x + \frac{\pi }{4} = k\pi ;k \in Z\\ \Leftrightarrow x = – \frac{\pi }{4} + k\pi ;k \in Z\end{array}\)