Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Kết nối tri thức Bài 9.22 trang 63 SBT toán 11 – Kết nối tri thức:...

Bài 9.22 trang 63 SBT toán 11 – Kết nối tri thức: Cho f x = cos ^2 2x + π /12 . Đạo hàm f’ 0 bằng A. 1. B. – 1. C. 2cos π /12. D

Áp dụng công thức đạo hàm của hàm số lượng giác \({\left( {{{\cos }^n}u} \right)^\prime } = – u’. n. \sin u{\cos ^{n – 1}}u\. Lời giải Giải bài 9.22 trang 63 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài tập cuối Chương 9. Cho \(f\left( x \right) = {\cos ^2}\left( {2x + \frac{\pi }{{12}}} \right)\). Đạo hàm \(f’\left( 0 \right)\…

Đề bài/câu hỏi:

Cho \(f\left( x \right) = {\cos ^2}\left( {2x + \frac{\pi }{{12}}} \right)\). Đạo hàm \(f’\left( 0 \right)\) bằng

A. \(1\).

B. \( – 1\).

C. \(2\cos \frac{\pi }{{12}}\).

D. \( – 2\cos \frac{\pi }{{12}}\).

Hướng dẫn:

Áp dụng công thức đạo hàm của hàm số lượng giác

\({\left( {{{\cos }^n}u} \right)^\prime } = – u’.n.\sin u{\cos ^{n – 1}}u\)

Lời giải:

\(y’ = 2\cos \left( {2x + \frac{\pi }{{12}}} \right){\left[ {\cos \left( {2x + \frac{\pi }{{12}}} \right)} \right]^\prime } = – 4\cos \left( {2x + \frac{\pi }{{12}}} \right)\sin \left( {2x + \frac{\pi }{{12}}} \right)\)

\(y’\left( 0 \right) = 2\cos \left( {2x + \frac{\pi }{{12}}} \right){\left[ {\cos \left( {2x + \frac{\pi }{{12}}} \right)} \right]^\prime } = – 4\cos \left( {\frac{\pi }{{12}}} \right)\sin \left( {\frac{\pi }{{12}}} \right) = – 2\sin \frac{\pi }{6} = – 1\)