Bước 1: Tập xác định D. Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\. Phân tích và giải Giải bài 1.19 trang 18 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 3. Hàm số lượng giác. Xét tính tuần hoàn của các hàm số sau:…
Đề bài/câu hỏi:
Xét tính tuần hoàn của các hàm số sau:
a) \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) với A > 0;
b) \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) với A > 0;
c) \(y = 3\sin 2x + 3\cos 2x\);
d) \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x – \frac{\pi }{3}} \right)\).
Hướng dẫn:
Bước 1: Tập xác định D.
Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\)và \(f(x + T) = f(x)\).
(Áp dụng \(\sin (x + 2\pi ) = \sin x\) và \(\tan (x + \pi ) = \tan x\)).
Ta chứng minh được câu a, câu b là trường hợp tổng quát của hàm \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) và \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\). Biến đổi câu c,d về dạng câu a,b bằng cách áp dụng công thức
\(\sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\) và công thức biến đổi tổng thành tích.
Lời giải:
a) Tập xác định: \(D = \mathbb{R}\).
Nếu kí hiệu \(f(x) = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có
\(x + \frac{\pi }{\omega } \in D,\,\,x – \frac{\pi }{\omega } \in D\) và
\(f\left( {x + \frac{{2\pi }}{\omega }} \right) = A\sin \left( {\omega \left( {x + \frac{{2\pi }}{\omega }} \right) + \varphi } \right) = A\sin \left( {\omega x + 2\pi + \varphi } \right) = A\sin \left( {\omega x + \varphi } \right) = f(x)\)
Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{{2\pi }}{\omega }\).
b) Nếu kí hiệu D là tập xác định của hàm số \(f(x) = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có
\(x + \frac{\pi }{\omega } \in D,\,\,x – \frac{\pi }{\omega } \in D\) và
\(f\left( {x + \frac{\pi }{\omega }} \right) = A\tan \left( {\omega \left( {x + \frac{\pi }{\omega }} \right) + \varphi } \right) = A\tan \left( {\omega x + \pi + \varphi } \right) = A\tan \left( {\omega x + \varphi } \right) = f(x)\)
Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{\pi }{\omega }\).
c) Ta có \(y = 3\sin 2x + 3\cos 2x = 3(\sin 2x + \cos 2x) = 3\sqrt 2 \sin \left( {2x + \frac{\pi }{4}} \right)\)
Theo như câu a, hàm số \(y = 3\sin 2x + 3\cos 2x\) là hàm số tuần hoàn có chu kì \(\pi \).
d) Ta có:
\(\begin{array}{l}y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x – \frac{\pi }{3}} \right) = 3\left( {\sin \left( {2x + \frac{\pi }{6}} \right) + \sin \left( {2x – \frac{\pi }{3}} \right)} \right)\\\,\,\,\,\, = 3\left( {2\sin \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) + \left( {2x – \frac{\pi }{3}} \right)}}{2}} \right)\cos \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) – \left( {2x – \frac{\pi }{3}} \right)}}{2}} \right)} \right)\\\,\,\,\,\, = 3.2\sin \left( {2x – \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4} = 6\sin \left( {2x – \frac{\pi }{{12}}} \right).\frac{{\sqrt 2 }}{2} = 3\sqrt 2 \sin \left( {2x – \frac{\pi }{{12}}} \right).\end{array}\)
Theo như câu a, hàm số \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x – \frac{\pi }{3}} \right)\) là hàm số tuần hoàn có chu kì \(\pi \).