Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Kết nối tri thức Bài 1.17 trang 17, 18 SBT toán 11 – Kết nối tri...

Bài 1.17 trang 17, 18 SBT toán 11 – Kết nối tri thức: Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau: a) y = 2 + 3 |cos x |; b) y = 2√sin x + 1

Áp dụng lý thuyết \( – 1 \le \sin x \le 1\), \( – 1 \le \cos x \le 1\). Hướng dẫn giải Giải bài 1.17 trang 17, 18 sách bài tập toán 11 – Kết nối tri thức với cuộc sống – Bài 3. Hàm số lượng giác. Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:…

Đề bài/câu hỏi:

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) \(y = 2 + \,3\,|\cos x\,|\);

b) \(y = 2\sqrt {\sin x} + 1\);

c)\(y = 3{\cos ^2}x + 4\cos 2x\);

d) \(y = \sin x + \cos x\).

Hướng dẫn:

Áp dụng lý thuyết \( – 1 \le \sin x \le 1\), \( – 1 \le \cos x \le 1\), \(0 \le \left| {\cos x} \right| \le 1\), \(0 \le \left| {\sin x} \right| \le 1\), \(0 \le \sqrt {\sin x} \le 1\), \(0 \le \sqrt {\cos x} \le 1\).

Lời giải:

a) Vì \(0 \le \,|\cos x\,|\, \le \,1\) nên \(0 \le \,3\,|\cos x\,|\, \le \,3\), do đó\(2 \le \,2 + 3\,|\cos x\,|\, \le \,5\,\forall \in \mathbb{R}\).

Vậy giá trị lớn nhất của hàm số là 5, đạt được khi

\(|\cos x\,|\, = 1 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi ,\,\,(k \in \mathbb{Z})\)

Và giá trị nhỏ nhất của hàm số là 2, đạt được khi

\(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,\,\,(k \in \mathbb{Z})\).

b) Điều kiện \(\sin x \ge 0\). Vì \(0 \le \sin x \le 1\) hay \(0 \le \sqrt {\sin x} \le 1\) nên \(0 \le 2\sqrt {\sin x} \le 2\), do đó \(1 \le 1 + 2\sqrt {\sin x} \le 3\) với mọi x thỏa mãn \(0 \le \sin x \le 1\).

Vậy giá trị lớn nhất của hàm số là 3, đạt được khi \(\sin x = 1\) hay

\(x = \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z})\).

Giá trị nhỏ nhất của hàm số là 1, đạt được khi \(\sin x = 0\) hay \(x = k\pi \,\,(k \in \mathbb{Z})\).

c) Ta có \(y = {\cos ^2}x + 4\cos 2x = 3.\frac{{1 + \cos 2x}}{2} + 4\cos 2x = \frac{3}{2} + \frac{{11}}{2}\cos 2x.\)

Vì \( – 1 \le \cos 2x \le 1\) nên \( – \frac{{11}}{2} \le \frac{{11}}{2}\cos 2x \le \frac{{11}}{2}\),

Do đó \( – 4 = \frac{3}{2} – \frac{{11}}{2} \le \frac{3}{2} + \frac{{11}}{2}\cos 2x \le \frac{3}{2} + \frac{{11}}{2} = 7\) với mọi \(x \in \mathbb{R}\)

Vậy giá trị lớn nhất của hàm số là 7, đạt được khi

\(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \,\,(k \in \mathbb{Z})\)

Và giá trị nhỏ nhất của hàm số là -4 đạt được khi

\(\cos 2x = – 1 \Leftrightarrow 2x = \pi + k2\pi \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z})\).

d) Ta có \(y = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right).\)

Vì \( – 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( – \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \) với mọi \(x \in \mathbb{R}\).

Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi

\(\sin \left( {x + \frac{\pi }{4}} \right) = 1 \Rightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \Rightarrow x = \frac{\pi }{4} + k2\pi .\)

Và giá trị nhỏ nhất của hàm số là \( – \sqrt 2 \), đạt được khi

\(\sin \left( {x + \frac{\pi }{4}} \right) = – 1 \Rightarrow x + \frac{\pi }{4} = – \frac{\pi }{2} + k2\pi \Rightarrow x = – \frac{{3\pi }}{4} + k2\pi .\)