Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 5 trang 39 SBT toán 11 – Chân trời sáng tạo...

Bài 5 trang 39 SBT toán 11 – Chân trời sáng tạo tập 2: Một vật chuyển động có quãng đường được xác định bởi phương trình s t = 2t^2 + 5t + 2

Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a. Hướng dẫn giải Giải bài 5 trang 39 sách bài tập toán 11 – Chân trời sáng tạo tập 2 – Bài 1. Đạo hàm. Một vật chuyển động có quãng đường được xác định bởi phương trình (sleft( t right) = 2{t^2} + 5t…

Đề bài/câu hỏi:

Một vật chuyển động có quãng đường được xác định bởi phương trình \(s\left( t \right) = 2{t^2} + 5t + 2\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm \(t = 4\).

Hướng dẫn:

+ Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f’\left( {{x_0}} \right)\) hoặc \(y’\left( {{x_0}} \right)\). Vậy \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\)

+ Sử dụng kiến thức về ý nghĩa đạo hàm để tính: Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f’\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\)

Lời giải:

Ta có: Với \({t_0}\) bất kì ta có:

\(s’\left( {{t_0}} \right) \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) – s\left( {{t_0}} \right)}}{{t – {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2{t^2} + 5t + 2 – 2t_0^2 – 5{t_0} – 2}}{{t – {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{2\left( {{t^2} – t_0^2} \right) + 5\left( {t – {t_0}} \right)}}{{t – {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \frac{{\left( {t – {t_0}} \right)\left( {2t + 2{t_0} + 5} \right)}}{{t – {t_0}}} \) \( = \mathop {\lim }\limits_{t \to {t_0}} \left( {2t + 2{t_0} + 5} \right) \) \( = 4{t_0} + 5\)

Do đó, \(s’\left( t \right) = 4t + 5\)

Vậy vận tốc tức thời tại thời điểm \(t = 4\) là: \(s’\left( 4 \right) = 4.4 + 5 = 21\) (giây)