Trang chủ Lớp 11 Toán lớp 11 SBT Toán 11 - Chân trời sáng tạo Bài 12 trang 95 SBT toán 11 – Chân trời sáng tạo...

Bài 12 trang 95 SBT toán 11 – Chân trời sáng tạo tập 1: Tại một bể bơi có dạng hình tròn có đường kính AB = 10m

Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính. Trả lời Giải bài 12 trang 95 sách bài tập toán 11 – Chân trời sáng tạo tập 1 – Bài tập cuối chương 3. Tại một bể bơi có dạng hình tròn có đường kính \(AB = 10m\),…

Đề bài/câu hỏi:

Tại một bể bơi có dạng hình tròn có đường kính \(AB = 10m\), một người xuất phát từ A bơi thẳng theo dây cung AC tạo với đường kính AB một góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\), rồi chạy bộ theo cung nhỏ CB đến điểm B (Hình 4). Gọi \(S\left( \alpha \right)\) là quãng đường người đó đã di chuyển.

a) Viết công thức tính \(S\left( \alpha \right)\) theo \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\).

b) Xét tính liên tục của hàm số \(y = S\left( \alpha \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\).

c) Tính các giới hạn \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right)\) và \(\mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ + }} S\left( \alpha \right)\).

Hướng dẫn:

Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\).

Lời giải:

a) Kí hiệu O là tâm hình tròn.

Do tam giác ABC vuông tại C nên \(AC = AB\cos \alpha = 10\cos \alpha \left( m \right)\)

Ta có: \(\widehat {BOC} = 2\widehat {BAC} = 2\alpha \) nên độ dài cung BC là: \(l = OB.\widehat {BOC} = 5.2\alpha = 10\alpha \left( m \right)\)

Quãng đường di chuyển của người đó là:

\(S\left( \alpha \right) = AC + l = 10\cos \alpha + 10\alpha = 10\left( {\cos \alpha + \alpha } \right)\)(m) \(\left( {0 < \alpha < \frac{\pi }{2}} \right)\)

b) Do các hàm số \(y = \alpha ,y = \cos \alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha \right)\) liên tục trên \(\left( {0;\frac{\pi }{2}} \right)\).

c) \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {0^ + }} 10\left( {\alpha + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha \to {0^ + }} \alpha + \mathop {\lim }\limits_{x \to {0^ + }} \cos \alpha } \right) = 10\left( {0 + 1} \right) = 10\)

\(\mathop {\lim }\limits_{\alpha \to {{\left( {\frac{\pi }{2}} \right)}^ + }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {{\left( {\frac{\pi }{2}} \right)}^ + }} 10\left( {\alpha + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \alpha + \mathop {\lim }\limits_{\alpha \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \cos \alpha } \right) = 10\left( {\frac{\pi }{2} + 0} \right) = 5\pi \)