Sử dụng các tính chất về hai mặt phẳng vuông góc, đường thẳng vuông góc với mặt phẳng. Hướng dẫn trả lời Giải bài 33 trang 103 sách bài tập toán 11 – Cánh diều – Bài 4. Hai mặt phẳng vuông góc. Cho hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\…
Đề bài/câu hỏi:
Cho hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\) cắt nhau và đường thẳng \(a\) nằm trong \(\left( P \right)\). Phát biểu nào sau đây là SAI?
A. Nếu \(a \bot \left( Q \right)\) thì \(\left( P \right) \bot \left( Q \right)\).
B. Nếu \(a \bot \left( Q \right)\) thì \(a \bot b\) với mọi \(b \subset \left( Q \right)\).
C. Nếu \(a \bot \left( Q \right)\) thì \(\left( P \right)\parallel \left( Q \right)\).
D. Nếu \(a \bot \left( Q \right)\) thì \(a \bot d\) với mọi \(d = \left( P \right) \cap \left( Q \right)\).
Hướng dẫn:
Sử dụng các tính chất về hai mặt phẳng vuông góc, đường thẳng vuông góc với mặt phẳng.
Lời giải:
Đáp án A đúng, vì nếu mặt phẳng này chứa một đường thẳng mà đường thẳng đó vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau.
Đáp án B đúng, vì với một đường thẳng vuông góc với mặt phẳng thì đường thẳng đó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
Đáp án C sai, vì hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau, nên chúng không thể song song với nhau.
Đáp án D đúng, vì nếu \[a \bot \left( Q \right)\] thì ta suy ra \(\left( P \right) \bot \left( Q \right)\). Ta có tính chất nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì cũng vuông góc với mặt phẳng kia.
Đáp án cần chọn là C.