Trang chủ Lớp 11 Toán lớp 11 Chuyên đề học tập Toán 11 - Kết nối tri thức Bài 2.21 trang 50 Chuyên đề học tập Toán 11 Kết nối...

Bài 2.21 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức: Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6

Một đồ thị không có khuyên, trong đó hai đỉnh được nối bằng nhiều nhất một cạnh (không có hai cạnh nào cùng nối một. Phân tích, đưa ra lời giải Giải bài 2.21 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức – Bài tập cuối chuyên đề 2 – Chuyên đề học tập Toán 11 Kết nối tri thức. Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc…

Đề bài/câu hỏi:

Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.

Hướng dẫn:

Một đồ thị không có khuyên, trong đó hai đỉnh được nối bằng nhiều nhất một cạnh (không có hai cạnh nào cùng nối một cặp đỉnh) gọi là một đơn đồ thị.

Lời giải:

Giả sử có đồ thị G thỏa mãn yêu cầu bài toán. Gọi x là số đỉnh bậc 3 của đồ thị.

Khi đó số đỉnh bậc 6 của đồ thì là \(12{\rm{ }}-{\rm{ }}x.\)

Tổng tất cả các bậc của đỉnh của đồ thị G là \(3x{\rm{ }} + {\rm{ }}6\left( {12{\rm{ }}-{\rm{ }}x} \right){\rm{ }} = {\rm{ }}3x{\rm{ }} + {\rm{ }}72{\rm{ }}-{\rm{ }}6x{\rm{ }} = {\rm{ }}72{\rm{ }}-{\rm{ }}3x.\)

Mà đồ thị G có 28 cạnh nên tổng tất cả các bậc của đỉnh của đồ thị G bằng 28 . 2 = 56.

Do đó ta có phương trình \(72{\rm{ }}-{\rm{ }}3x{\rm{ }} = {\rm{ }}56\), suy ra \(x{\rm{ }} = \;163 \notin \mathbb{Z},\)mà số đỉnh phải là số nguyên nên không tồn tại đồ thị thỏa mãn điều kiện đề bài.

Vậy không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 6.