Lời giải bài tập, câu hỏi Giải bài 4.37 trang 66 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài 11. Tích vô hướng của hai vectơ. Trong mặt phẳng tọa độ Oxy cho ba điểm A( – 3;2),B(1;5) và C(3; – 1)….
Đề bài/câu hỏi:
Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A( – 3;2),\,\,B(1;5)\) và \(C(3; – 1).\)
a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm \(G\) của tam giác ấy.
b) Tìm tọa độ trực tâm \(H\) của tam giác \(ABC.\)
c) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tìm tọa độ của \(I.\)
Lời giải:
a) Ta có: \(\overrightarrow {AB} = (4;3)\) và \(\overrightarrow {AC} = (6; – 3)\)
\( \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương
\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) không thẳng hàng
\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác.
Gọi \(G\) là trọng tâm của \(\Delta ABC\)
\( \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{ – 3 + 1 + 3}}{3} = \frac{1}{3}}\\{y = \frac{{2 + 5 – 1}}{3} = 2}\end{array}} \right.\,\, \Leftrightarrow \,\,G\left( {\frac{1}{3};2} \right)\)
b) Gọi \(H(x;y)\) là trực tâm của \(\Delta ABC\)
Ta có: \(\overrightarrow {BH} = (x – 1;y – 5)\) và \(\overrightarrow {CH} = (x – 3;y + 1)\)
Do \(BH \bot AC\) và \(CH \bot AB\)
Nên \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {BH} .\overrightarrow {AC} = 0}\\{\overrightarrow {CH} .\overrightarrow {AB} = 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6\left( {x – 1} \right) – 3\left( {y – 5} \right) = 0}\\{4\left( {x – 3} \right) + 3\left( {y + 1} \right) = 0}\end{array}} \right.\)
\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2x – y = – 3}\\{4x + 3y = 9}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 3}\end{array}} \right.\)
Vậy \(H(0;3).\)
c) Gọi \(I(x;y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)
Ta có: \(\overrightarrow {IH} = 3\overrightarrow {IG} \) \( \Leftrightarrow \) \(( – x;3 – y) = 3\left( {\frac{1}{3} – x;2 – y} \right) = \left( {1 – 3x;6 – 3y} \right)\)
\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{ – x = 1 – 3x}\\{3 – y = 6 – 3y}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{2}}\\{y = \frac{3}{2}}\end{array}} \right.\)
Vậy \(I\left( {\frac{1}{2};\frac{3}{2}} \right)\)