Tính chất trun điểm: \(\overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {IM} \) – Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA} + \overrightarrow. Hướng dẫn cách giải/trả lời Giải bài 4.16 trang 54 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài 9. Tích của một vectơ với một số. Cho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,…
Đề bài/câu hỏi:
Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {OI} .\)
Hướng dẫn:
– Tính chất trun điểm: \(\overrightarrow {IA} + \overrightarrow {IB} = 2\overrightarrow {IM} \)
– Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} \)
Lời giải:
Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OI} + \overrightarrow {IA} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {IC} } \right) + \left( {\overrightarrow {OI} + \overrightarrow {ID} } \right)\)
\(\begin{array}{l} = 4\overrightarrow {OI} + \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\\ = 4\overrightarrow {OI} + 2\overrightarrow {IM} + 2\overrightarrow {IN} \\ = 4\overrightarrow {OI} \end{array}\)