Trang chủ Lớp 10 Vật lí lớp 10 SBT Toán 10 - Kết nối tri thức Bài 10 trang 72 SBT toán 10 – Kết nối tri thức:...

Bài 10 trang 72 SBT toán 10 – Kết nối tri thức: Viết khai triển nhị thức Newton của (3x – 2) ^n, biết n là số tự nhiên thoả mãn A_n^2 + 2C_n^1 = 30

Áp dụng công thức \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\. Hướng dẫn giải Giải bài 10 trang 72 sách bài tập toán 10 – Kết nối tri thức với cuộc sống – Bài tập ôn tập cuối năm. Viết khai triển nhị thức Newton của \({(3x – 2)^n}\),…

Đề bài/câu hỏi:

Viết khai triển nhị thức Newton của \({(3x – 2)^n}\), biết n là số tự nhiên thoả mãn \(A_n^2 + 2C_n^1 = 30\)

Hướng dẫn:

Áp dụng công thức \({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)

Lời giải:

Ta có \(A_n^2 + 2C_n^1 = 30 \Leftrightarrow \frac{{n!}}{{(n – 2)!}} + 2\frac{{n!}}{{1!(n – 1)!}} = 30\)

\(\begin{array}{l} \Leftrightarrow n(n – 1) + 2n – 30 = 0\\ \Leftrightarrow {n^2} + n – 30 = 0\end{array}\)

\( \Leftrightarrow n = 5\) (thỏa mãn) hoặc \(n = – 6\) (loại)

Khi đó \(\begin{array}{l}{(3x – 2)^n} = {(3x – 2)^5}\\ = {(3x)^5} + 5{(3x)^4}.( – 2) + 10{(3x)^3}{( – 2)^2} + 10{(3x)^2}{( – 2)^3} + 5.3x{( – 2)^4} + {( – 2)^5}\\ = 243{x^5} – 810{x^4} + 1080{x^3} – 720{x^2} + 240x – 32\end{array}\)