Giải Hoạt động 1 Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách (trang 36, 37) – SGK Toán 10 Kết nối tri thức.
Câu hỏi/Đề bài:
Trong mặt phẳng tọa độ, cho hai đường thẳng
\(\begin{array}{l}{\Delta _1}:x – 2y + 3 = 0\\{\Delta _2}:3x – y – 1 = 0\end{array}\) .
a) Điểm \(M\left( {1;2} \right)\) có thuộc cả hai đường thẳng nói trên hay không?
b) Giải hệ \(\left\{ \begin{array}{l}x – 2y + 3 = 0\\3x – y – 1 = 0\end{array} \right.\).
c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) với nghiệm của hệ phương trình trên.
Lời giải:
a) Điểm \(M\left( {1;2} \right)\) thuộc cả hai đường thẳng nói trên.
b) Ta có: \(\left\{ \begin{array}{l}x – 2y + 3 = 0\\3x – y – 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x – 2y = – 3\\3x – y = 1\end{array} \right.\).
Sử dụng máy tính cầm tay, ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
c) Tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) chính là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x – 2y + 3 = 0\\3x – y – 1 = 0\end{array} \right.\).