Để tam thức bậc hai \(a{x^2} + bx + c > 0\)với mọi \(x \in \mathbb{R}\) thì: a>0 và \(\Delta < 0\. Giải chi tiết Giải bài 6.17 trang 24 SGK Toán 10 – Kết nối tri thức – Bài 17. Dấu của tam thức bậc hai. Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi…
Đề bài/câu hỏi:
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):
\({x^2} + (m + 1)x + 2m + 3\)
Hướng dẫn:
Để tam thức bậc hai \(a{x^2} + bx + c > 0\)với mọi \(x \in \mathbb{R}\) thì:
a>0 và \(\Delta < 0\)
Lời giải:
Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)
Ta có: a = 1 >0 nên \(\Delta < 0\)
\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} – 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 – 8m – 12 < 0\\ \Leftrightarrow {m^2} – 6m – 11 < 0\end{array}\)
Tam thức \(f(m) = {m^2} – 6m – 11\) có \(\Delta ‘ = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} = 3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)
Khi đó
\( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)
Vậy \( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)