Trang chủ Lớp 10 Toán lớp 10 SGK Toán 10 - Chân trời sáng tạo Thực hành 1 Bài 2 (trang 81, 82, 83) Toán 10: Gieo...

Thực hành 1 Bài 2 (trang 81, 82, 83) Toán 10: Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố

Đáp án Thực hành 1 Bài 2. Xác suất của biến cố (trang 81, 82, 83) – SGK Toán 10 Chân trời sáng tạo. Tham khảo: Bước 1: Xác định không gian mẫu.

Câu hỏi/Đề bài:

Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:

a) “Hai mặt xuất hiện có cùng số chấm”

b) “Tổng số chấm trên hai mặt xuất hiện bằng 9”

Hướng dẫn:

Bước 1: Xác định không gian mẫu

Bước 2: Xác định số kết quả thuận lợi của biến cố

Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)

Lời giải:

Kết quả của mỗi lần thử là một cặp (i; j) với i j lần lượt là số chấm xuất hiện trên hai xúc xắc, ta có không gian mẫu là:

\(\Omega = \begin{array}{l}\{(1;1),(1;2),(1;3),(1;4),(1;5),(1;6),(2;1),(2;2),(2;3),(2;4),(2;5),(2;6),(3;1),(3;2),(3;3),(3;4),(3;5),(3;6),\\(4;1),(4;2),(4;3),(4;4),(4;5),(4;6),(5;1),(5;2),(5;3),(5;4),(5;5),(5;6),(6;1),(6;2),(6;3),(6;4),(6;5),(6;6)\}\end{array} \)

Không gian mẫu gồm có 36 kết quả, tức là \(n\left( \Omega \right) = 36\)

a) Ta có tập hợp miêu tả biến cố A

\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\} \Rightarrow n\left( A \right) = 6\)

Do đó, xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}\)

b) Ta có tập hợp miêu tả biến cố B

\(B = \left\{ {(6;3),(5;4)} \right\} \Rightarrow n\left( B \right) = 2\)

Do đó, xác suất của biến cố B là: \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{2}{{36}}= \frac{1}{{18}}\)