Tập xác định của hàm số \(y = f(x)\) là tập hợp tất cả các số thực x sao cho biểu thức \(f(x)\) có nghĩa. Hướng dẫn giải Giải bài 1 trang 59 SGK Toán 10 tập 1 – Chân trời sáng tạo – Bài tập cuối Chương 3. Tìm tập xác định của các hàm số sau:…
Đề bài/câu hỏi:
Tìm tập xác định của các hàm số sau:
a) \(y = 4{x^2} – 1\)
b) \(y = \dfrac{1}{{{x^2} + 1}}\)
c) \(y = 2 + \dfrac{1}{x}\)
Hướng dẫn:
Tập xác định của hàm số \(y = f(x)\) là tập hợp tất cả các số thực x sao cho biểu thức \(f(x)\) có nghĩa.
\(\frac{A}{B}\) có nghĩa \( \Leftrightarrow B \ne 0\)
Lời giải:
a) Biểu thức \(4{x^2} – 1\) có nghĩa với mọi \(x \in \mathbb{R}\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} + 1 \ne 0,\)tức là với mọi \(x \in \mathbb{R}\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\)
c) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(\frac{1}{x}\) có nghĩa, tức là khi \(x \ne 0,\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}{\rm{\backslash }}\{ 0\} \)