Trang chủ Lớp 10 Toán lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 5 trang 14 SBT toán 10 – Chân trời sáng tạo:...

Bài 5 trang 14 SBT toán 10 – Chân trời sáng tạo: Tìm tập xác định của các hàm số sau: a) y = √15x^2 + 8x – 12

Vận dụng kiến thức giải Giải bài 5 trang 14 SBT toán 10 – Chân trời sáng tạo – Bài 2. Giải bất phương trình bậc hai một ẩn. Tìm tập xác định của các hàm số sau: a) \(y = \sqrt {15{x^2} + 8x – 12} \…

Đề bài/câu hỏi:

Tìm tập xác định của các hàm số sau:

a) \(y = \sqrt {15{x^2} + 8x – 12} \)

b) \(y = \frac{{x – 1}}{{\sqrt { – 11{x^2} + 30x – 16} }}\)

c) \(y = \frac{1}{{x – 2}} – \sqrt { – {x^2} + 5x – 6} \)

d) \(y = \frac{1}{{\sqrt {2x + 1} }} – \sqrt {6{x^2} – 5x – 21} \)

Lời giải:

a) Hàm số xác định khi và chỉ khi \(15{x^2} + 8x – 12 \ge 0\).

Tam thức \(15{x^2} + 8x – 12\) có \(a = 15 > 0\) và có hai nghiệm là \(x = – \frac{6}{5}\) hoặc \(x = \frac{2}{3}\).

Do đó \(15{x^2} + 8x – 12 \ge 0\) khi \(x \le – \frac{6}{5}\) hoặc \(x \ge \frac{2}{3}\)

Vậy tập xác định của hàm số là \(\left( { – \infty ; – \frac{6}{5}} \right] \cup \left[ {\frac{2}{3}; + \infty } \right)\)

b) Hàm số xác định khi và chỉ khi \( – 11{x^2} + 30x – 16 > 0\),

Tam thức \( – 11{x^2} + 30x – 16\) có \(a = – 11 < 0\) và có hai nghiệm là \(x = \frac{8}{{11}}\) hoặc \(x = 2\).

Do đó \( – 11{x^2} + 30x – 16 > 0\) khi \(\frac{8}{{11}} < x < 2\)

Vậy tập xác định của hàm số là \(\left( {\frac{8}{{11}};2} \right)\)

c) Hàm số xác định khi và chỉ khi \(\left\{ \begin{array}{l}x – 2 \ne 0\\ – {x^2} + 5x – 6 \ge 0\end{array} \right.\)

Tam thức \( – {x^2} + 5x – 6\) có \(a = – 1 < 0\) và có hai nghiệm là \(x = 2\) hoặc \(x = 3\).

Do đó \( – {x^2} + 5x – 6 \ge 0\) khi \(2 \le x \le 3\)

Suy ra \(\left\{ \begin{array}{l}x – 2 \ne 0\\ – {x^2} + 5x – 6 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\2 \le x \le 3\end{array} \right. \Leftrightarrow 2 < x \le 3\)

Vậy tập xác định của hàm số là \(\left( {2;3} \right]\)

d) Hàm số xác định khi và chỉ khi \(\left\{ \begin{array}{l}2x + 1 > 0\\6{x^2} – 5x – 21 \ge 0\end{array} \right.\)

Tam thức \(6{x^2} – 5x – 21\) có \(a = 6 > 0\) và có hai nghiệm là \(x = – \frac{3}{2}\) hoặc \(x = \frac{7}{3}\).

Do đó \(6{x^2} – 5x – 21 \ge 0\) khi \(\left[ \begin{array}{l}x \le – \frac{3}{2}\\x \ge \frac{7}{3}\end{array} \right.\)

Suy ra \(\left\{ \begin{array}{l}2x + 1 > 0\\6{x^2} – 5x – 21 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > – \frac{1}{2}\\\left[ \begin{array}{l}x \le – \frac{3}{2}\\x \ge \frac{7}{3}\end{array} \right.\end{array} \right. \Leftrightarrow x \ge \frac{7}{3}\)

Vậy tập xác định của hàm số là \(\left[ {\frac{7}{3}; + \infty } \right)\)