Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức. Phân tích, đưa ra lời giải Giải bài 5 trang 103 SBT toán 10 – Chân trời sáng tạo – Bài tập cuối Chương 10. Doanh nghiệp A chọn ngẫu nhiên 2 tháng trong năm 2020 để tri ân khách hàng….
Đề bài/câu hỏi:
Doanh nghiệp A chọn ngẫu nhiên 2 tháng trong năm 2020 để tri ân khách hàng. Doanh nghiệp B cũng chọn ngẫu nhiên 1 tháng trong năm đó để tri ân khách hàng. Tính xác suất của biến cố “Hai doanh nghiệp tri ân khách hàng cùng một tháng trong năm”
Hướng dẫn:
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Biến cố đối của biến cố A là biến cố không xảy ra A, kí hiệu là \(\overline A \) và \(P\left( {\overline A } \right) + P\left( A \right) = 1\)
Lời giải:
+ Hai doanh nghiệp chọn tháng để tri ân khách hàng cần 2 công đoạn
Công đoạn 1: Doanh nghiệp A chọn 2 tháng trong năm, có \(C_{12}^2\) cách
Công đoạn 2: Doanh nghiệp B chọn 1 tháng trong năm, có \(C_{12}^1\) cách
\( \Rightarrow \)\(n\left( \Omega \right) = C_{12}^2.C_{12}^1\)
+ \(\overline A :\) “Hai doanh nghiệp tri ân khách hàng khác tháng trong năm”
Công đoạn 1: Doanh nghiệp A chọn 2 tháng trong năm, có \(C_{12}^2\) cách
Công đoạn 2: Doanh nghiệp B chọn 1 tháng trong năm, khác với 2 tháng mà doanh nghiệp A chọn có \(10\) cách
\( \Rightarrow \)\(n\left( {\overline A } \right) = C_{12}^2.10\)
Xác suất để hai doanh nghiệp tri ân khách hàng khác tháng trong năm là: \( \Rightarrow P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{12}^2.10}}{{C_{12}^2.C_{12}^1}} = \frac{5}{6}\)
Xác suất để hai doanh nghiệp tri ân khách hàng cùng một tháng trong năm là:
\(P(A) = 1 – P\left( {\overline A } \right) = 1 – \frac{5}{6} = \frac{1}{6}\)