Gọi C là địa điểm máy bay đến sau khi xuất phát 1 giờ. Tìm tọa độ điểm C Bước 1. Hướng dẫn giải Giải bài 23 trang 67 SBT toán 10 – Cánh diều – Bài 2. Biểu thức tọa độ của các phép toán vectơ. Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng toạ độ Oxy với…
Đề bài/câu hỏi:
Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng toạ độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có toạ độ
(600 ; 200) đến thành phố B có toạ độ (200 ; 500) và thời gian bay quãng đường AB là 3 giờ. Hãy tìm toạ độ của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ.
Hướng dẫn:
Gọi C là địa điểm máy bay đến sau khi xuất phát 1 giờ. Tìm tọa độ điểm C
Bước 1: Tính tọa độ \(\overrightarrow {AB} \)
Bước 2: Từ giả thiết tìm điểm C thỏa mãn \(\overrightarrow {AC} = \frac{1}{3}\overrightarrow {AB} \) rồi kết luận
Lời giải:
Gọi C(a; b) là địa điểm máy bay đến sau khi xuất phát 1 giờ
Ta có: \(\overrightarrow {AB} = ( – 400;300)\)
Theo giả thiết, AC = \(\frac{1}{3}AB\) \( \Rightarrow \overrightarrow {AC} = \frac{1}{3}\overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}a – 600 = \frac{1}{3}.( – 400)\\b – 200 = \frac{1}{3}.300\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{1400}}{3}\\b = 300\end{array} \right. \Rightarrow C\left( {\frac{{1400}}{3};300} \right)\)
Vậy toạ độ của máy bay trực thăng tại thời điểm sau khi xuất phát 1 giờ là \(\left( {\frac{{1400}}{3};300} \right)\).