Đáp án Giải đề 1 Tổng hợp 10 đề thi học kì 1 Toán 10 kết nối tri thức – Đề thi đề kiểm tra Toán lớp 10 Kết nối tri thức.
Câu hỏi/Đề bài:
HƯỚNG DẪN GIẢI CHI TIẾT
Phần 1: Trắc nghiệm (30 câu – 6 điểm)
1.A |
2.D |
3.B |
4.D |
5.C |
6.C |
7.D |
8.D |
9.A |
10.D |
11.D |
12.B |
13.B |
14.D |
15.D |
16.D |
17.A |
18.A |
19.B |
20.B |
21.D |
22.D |
23.B |
24.B |
25.A |
26.C |
27.C |
28.B |
29.C |
30.B |
Câu 1 (NB):
Hướng dẫn:
Mệnh đề là câu khẳng định có tính đúng hoặc sai.
Cách giải:
Bạn bao nhiêu tuổi? là câu nghi vấn nên không phải là mệnh đề.
Chọn A.
Câu 2 (NB):
Hướng dẫn:
Ta thường dùng các chữ cái in hoa để kí hiệu tập hợp và chữ cái in thường để kí hiệu phần tử thuộc tập hợp.
Cách giải:
Ta có: \(\bar a = 31975421 \pm 150 \Rightarrow \bar a \in \left[ {31975271;31975571} \right]\).
Khi làm tròn số gần đúng a ta nên làm tròn đến hàng nghìn vì chữ số hàng trăm không chắc chắn đúng.
Vậy quy tròn số gần đúng a ta được số 31975000.
Chọn D.
Câu 3 (TH):
Hướng dẫn:
Sử dụng quy tắc ba điểm.
Sử dụng hai vectơ bằng nhau.
Cách giải:
Ta có:
\(\begin{array}{*{20}{l}}{\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BM} {\rm{ \;}} + \overrightarrow {NA} {\rm{ \;}} + \overrightarrow {BQ} }\\{ = \overrightarrow {AM} {\rm{ \;}} + \overrightarrow {NA} {\rm{ \;}} + \overrightarrow {BQ} }\\{ = \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {BQ} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {MQ} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {BN} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {BA} }\end{array}\)
Chọn B.
Câu 4 (NB):
Hướng dẫn:
Sử dụng định lí cosin trong tam giác: \(B{C^2} = A{B^2} + A{C^2} – 2AB.AC.\cos \angle BAC.\)
Cách giải:
Ta có:
\(\begin{array}{*{20}{l}}{B{C^2} = A{B^2} + A{C^2} – 2AB.AC.\cos \angle BAC.}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {6^2} + {8^2} – 2.6.8.\cos {{120}^0}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = 148}\\{ \Rightarrow BC = \sqrt {148} {\rm{ \;}} = 2\sqrt {37} .}\end{array}\)
Chọn D.
Câu 5 (NB):
Hướng dẫn:
Cặp số nào thỏa mãn bất phương trình là nghiệm của bất phương trình.
Cách giải:
Thay cặp số (x;y) = (0;4) vào bất phương trình: 0 – 4 + 3 > 0 => Sai.
Thay cặp số (x;y) = (2;5) vào bất phương trình: 2 – 5 + 3 > 0 => Sai.
Thay cặp số (x;y) = (1;3) vào bất phương trình: 1 – 3 + 3 > 0 => Đúng.
Thay cặp số (x;y) = (1;4) vào bất phương trình: 1 – 4 + 3 > 0 => Sai.
Chọn C.
Câu 6 (TH):
Hướng dẫn:
Sử dụng quy tắc hình bình hành.
Cách giải:
Theo quy tắc hình bình hành ta có:
\(\begin{array}{*{20}{l}}{\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \overrightarrow {AC} }\\{ \Rightarrow \overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} = 2\overrightarrow {AC} }\\{ \Rightarrow k = 2.}\end{array}\)
Chọn C.
Câu 7 (NB):
Hướng dẫn:
Sử dụng các công thức tính diện tích tam giác: \(S = \frac{{abc}}{{4R}}\), \(S = \frac{1}{2}ab\sin C\), \(S = \frac{1}{2}\sqrt {p\left( {p – a} \right)\left( {p – b} \right)\left( {p – c} \right)} \), \(S = p.R\) với \(p = \frac{{a + b + c}}{2}.\)
Cách giải:
\(S = \frac{1}{2}ab\sin C\) nên đáp án D sai.
Chọn D.
Câu 8 (VD):
Hướng dẫn:
Sử đụng hằng đẳng thức để biến đổi biểu thức đề bài cho.
Sử dụng hệ quả định lí cosin trong tam giác.
Cách giải:
Ta có:
\(\begin{array}{*{20}{l}}{{a^4} + {b^4} + {c^4} + {a^2}{c^2} – 2{a^2}{b^2} – 2{b^2}{c^2} = 0}\\{ \Leftrightarrow {a^4} + {c^4} + 2{a^2}{c^2} – {a^2}{c^2} + {b^4} – 2{a^2}{b^2} – 2{b^2}{c^2} = 0.}\\{ \Leftrightarrow {{\left( {{a^2} + {c^2}} \right)}^2} – 2{b^2}\left( {{a^2} + {c^2}} \right) + {b^4} – {a^2}{c^2} = 0}\\{ \Leftrightarrow {{\left( {{a^2} + {c^2} – {b^2}} \right)}^2} = {{\left( {ac} \right)}^2}}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{a^2} + {c^2} – {b^2} = ac}\\{{a^2} + {c^2} – {b^2} = – ac}\end{array}} \right.}\end{array}\)
Áp dụng hệ quả định lí cosin trong tam giác ta có: \(\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}} \Rightarrow {a^2} + {c^2} – {b^2} = 2ac\cos B\).
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{2ac\cos B = ac}\\{2ac\cos B = {\rm{ \;}} – ac}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\cos B = \frac{1}{2}}\\{\cos B = {\rm{ \;}} – \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{B = {{60}^0}}\\{B = {{120}^0}}\end{array}} \right.\).
Chọn D.
Câu 9 (TH):
Hướng dẫn:
Biểu diễn các tập hợp trên trục số và thực hiện các phép toán trên tập hợp.
Cách giải:
\(P\backslash Q = \left[ { – 4; – 3} \right] \Rightarrow A\) đúng.
\(P \cap Q = \left( { – 3;5} \right) \Rightarrow B\) sai.
\(P \cup Q = \left[ { – 4; + \infty } \right) \Rightarrow C\) sai.
\({C_\mathbb{R}}P = \mathbb{R}\backslash P = \left( { – \infty ; – 4} \right) \cup \left[ {5; + \infty } \right) \Rightarrow D\) sai.
Chọn A.
Câu 10 (TH):
Hướng dẫn:
Sử dụng khái niệm các phép toán trên tập hợp.
Cách giải:
Phần tô đậm trong hình vẽ biểu diễn cho tập hợp \(\left( {A \cap B} \right)\backslash C.\)
Chọn D.
Câu 11 (TH):
Hướng dẫn:
Sử dụng định lí Cosin trong tam giác ABC ta có: \(A{B^2} = A{C^2} + B{C^2} – 2AC.BC.\cos C.\)
Cách giải:
Áp dụng định lí Cosin trong tam giác ABC ta có:
\(\begin{array}{*{20}{l}}{A{B^2} = A{C^2} + B{C^2} – 2AC.BC.\cos C}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{200}^2} + {{180}^2} – 2.200.180.\cos {{52}^0}16′ \approx 28337}\\{ \Rightarrow AB \approx 168{\mkern 1mu} {\mkern 1mu} \left( m \right)}\end{array}\)
Chọn D.
Câu 12 (TH):
Hướng dẫn:
Dùng công thức \({\sin ^2}x + {\cos ^2}x = 1\) để tính cos x
Cách giải:
\(\begin{array}{*{20}{l}}{\sin x = \frac{1}{2} \Rightarrow \sin {x^2} = \frac{1}{4} \Rightarrow {{\cos }^2}x = 1 – {{\sin }^2}x = 1 – \frac{1}{4} = \frac{3}{4}}\\{ \Rightarrow {{\sin }^2}x – {{\cos }^2}x = \frac{1}{4} – \frac{3}{4} = \frac{{ – 1}}{2}}\end{array}\)
Chọn B.
Câu 13 (TH):
Hướng dẫn:
Xác định tập hợp A, B dưới dạng khoảng, đoạn, nửa khoảng.
Biểu diễn và tìm giao trên trục số.
Cách giải:
\(\begin{array}{*{20}{l}}{A = \left\{ {x \in \mathbb{R}| – 1 < x < 4} \right\} \Rightarrow A = \left( { – 1;4} \right).}\\{B = \left\{ {x \in \mathbb{R}|\left| x \right| \le 3} \right\} \Rightarrow B = \left[ { – 3;3} \right].}\end{array}\)
Vậy \(A \cap B = \left( { – 1;3} \right].\)
Chọn B.
Câu 14 (TH):
Hướng dẫn:
Nếu \(\alpha {\rm{ \;}} + \beta {\rm{ \;}} = {90^0}\) thì \(\sin \alpha {\rm{ \;}} = \cos \beta \).
Cách giải:
Ta có:
\(\begin{array}{*{20}{l}}{A = {{\sin }^2}{{51}^0} + {{\sin }^2}{{55}^0} + {{\sin }^2}{{39}^0} + {{\sin }^2}{{35}^0}}\\{A = \left( {{{\sin }^2}51 + {{\sin }^2}{{39}^0}} \right) + \left( {{{\sin }^2}{{55}^0} + {{\sin }^2}{{35}^0}} \right)}\\{A = \left( {{{\sin }^2}51 + {{\sin }^2}\left( {{{90}^0} – {{51}^0}} \right)} \right) + \left( {{{\sin }^2}{{55}^0} + {{\sin }^2}\left( {{{90}^0} – {{55}^0}} \right)} \right)}\\{A = \left( {{{\sin }^2}51 + {{\cos }^2}{{51}^0}} \right) + \left( {{{\sin }^2}{{55}^0} + {{\cos }^2}{{55}^0}} \right)}\\{A = 1 + 1 = 2.}\end{array}\)
Chọn D.
Câu 15 (TH):
Hướng dẫn:
Vì M đứng yên nên \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\).
Sử dụng quy tắc hình bình hành.
Cách giải:
Vì M đứng yên nên \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\).
Áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} = \overrightarrow {MD} \), với D là đỉnh thứ tư của hình bình hành AMBD như hình vẽ.
\(\begin{array}{*{20}{l}}{ \Rightarrow \overrightarrow {MD} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MC} {\rm{ \;}} = {\rm{ \;}} – \overrightarrow {MD} }\\{ \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MC} } \right| = \left| { – \overrightarrow {MD} } \right| = MD}\end{array}\)
Vì MA = MB = 100, \(\angle AMB = {60^0}\) nên tam giác AMB đều \( \Rightarrow MD = 100\sqrt 3 \).
Vậy \(\left| {\overrightarrow {{F_3}} } \right| = 100\sqrt 3 N.\)
Chọn D.
Câu 16 (TH):
Hướng dẫn:
Dựa vào các khái niệm về hai vectơ cùng phương, cùng hướng.
Cách giải:
Dễ thấy A, B đúng.
C: \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) cùng phương với \(\vec c\) nên giá của \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) song song hoặc trùng với giá của \(\vec c\) => Giá của \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) song song hoặc trùng nhau, do đó \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) cùng phương => C đúng.
Chọn D.
Câu 17 (VD):
Hướng dẫn:
Xác định và so sánh phương sai, độ lệch chuẩn về tốc độ của 20 chiếc xe ô tô trên mỗi con đường.
Cách giải:
*) Con đường A
Bảng phân bố tần số:
Số trung bình: \(\overline {{x_A}} {\rm{\;}} = \frac{{60.2 + 65.4 + 68.2 + 72.1 + 75.2 + 76.2 + 80.2 + 84.1 + 85.2 + 90.2}}{{20}}\)\( = 74,2\left( {{\rm{km/h}}} \right)\)
Phương sai: \(s_A^2 = \frac{1}{{20}}\left[ {2.{{(60 – 74,2)}^2} + 4.{{(65 – 74,2)}^2} + … + 2.{{(90 – 74,2)}^2}} \right] = 86,36\left( {km/h} \right)\)
Độ lệch chuẩn: \({s_A} = \sqrt {s_A^2} {\rm{\;}} = \sqrt {86,36} {\rm{\;}} \approx 9,29{\mkern 1mu} {\mkern 1mu} \left( {km/h} \right)\)
*) Con đường B
Bảng phân bố tần số:
Số trung bình: \({x_B} = \frac{{55.3 + 60.1 + 62.2 + 64.2 + 70.3 + 76.2 + 79.3 + 80.2 + 85.2}}{{20}} = 70,3\left( {{\rm{km/h}}} \right)\)
Phương sai: \(s_B^2 = \frac{1}{{20}}\left[ {3.{{(55 – 70,3)}^2} + 1.{{(60 – 70,3)}^2} + … + 2.{{(85 – 70,3)}^2}} \right] = 96,91\left( {km/h} \right)\)
Độ lệch chuẩn: \({s_B} = \sqrt {s_B^2} {\rm{\;}} = \sqrt {96,91} {\rm{\;}} \approx 9,84{\mkern 1mu} {\mkern 1mu} \left( {km/h} \right)\)
Vậy xe chạy trên con đường A sẽ an toàn hơn.
Chọn A.
Câu 18 (NB):
Hướng dẫn:
Cho mẫu số liệu có kích thước \(N\) là \(\left\{ {{x_1};{\mkern 1mu} {\mkern 1mu} {x_2};{\mkern 1mu} {\mkern 1mu} \ldots ;{\mkern 1mu} {\mkern 1mu} {x_N}} \right\}\). Phương sai của mẫu số liệu này bằng trung bình của tổng các bình phương độ lệch giữa các giá trị với số trung bình.
Cách giải:
Dựa theo lý thuyết, ta có:
Dãy số liệu \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2}, \ldots ,{\mkern 1mu} {\mkern 1mu} {x_N}\) có kích thước mẫu \(N\), phương sai được tính theo công thức:
\({s^2} = \frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {{x_i} – \bar x} \right)}^2}} \) trong đó \(\bar x = \) trung bình cộng của mẫu số liệu
Chọn A.
Câu 19 (TH):
Hướng dẫn:
Sử dụng công thức: \(\overrightarrow {BA} .\overrightarrow {BC} {\rm{ \;}} = BA.BC.\cos \angle \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right).\)
Cách giải:
Vì ABC là tam giác vuông cân tại A nên \(BC = AB\sqrt 2 {\rm{ \;}} = 4\sqrt 2 \) và \(\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \angle ABC = {45^0}\).
Vậy \(\overrightarrow {BA} .\overrightarrow {BC} {\rm{ \;}} = BA.BC.\cos \angle \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\)
\( = 4.4\sqrt 2 .\cos {45^0} = 4.4\sqrt 2 .\frac{{\sqrt 2 }}{2} = 16.\)
Chọn B.
Câu 20 (TH):
Hướng dẫn:
Đối với bảng phân bố tần số ghép lớp:
+ Số trung bình cộng: \(\bar x = \frac{{{c_1}{n_1} + {c_2}{n_2} + \ldots + {c_k}{n_k}}}{N}\)
+ Phương sai: \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{c_1} – \bar x} \right)}^2} + {n_2}{{\left( {{c_2} – \bar x} \right)}^2} + \ldots + {n_k}{{\left( {{c_k} – \bar x} \right)}^2}} \right]\)
+ Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)
Với \({n_i}\) là tần số của giá trị \({c_i}\).
Cách giải:
Ta có bảng phân bố tần số, tần suất ghép lớp:
Số trung bình cộng:
\(\bar x = \frac{{44,5.3 + 54,5.6 + 64,5.19 + 74,5.23 + 84,5.9}}{{60}} = \frac{{4160}}{{60}} \approx 69,33\) (nghìn đồng)
Phương sai:
\({s^2} = \frac{1}{{60}}\left( {3.44,{5^2} + 6.54,{5^2} + 19.64,{5^2} + 23.74,{5^2} + 9.84,{5^2}} \right) – {\left( {\frac{{4160}}{{60}}} \right)^2}\)\( = \frac{{3779}}{{36}}\) (nghìn đồng)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)\( = \sqrt {\frac{{3779}}{{36}}} {\rm{\;}} \approx 10,25\) (nghìn đồng)
Chọn B.
Câu 21 (NB):
Hướng dẫn:
Chọn điểm bất kì thỏa mãn bất phương trình để chọn miền nghiệm
Cách giải:
Vì O(0,0) không thuộc miền nghiệm nên nửa mặt phẳng có bờ là d khác phía gốc tọa độ O và không lấy đường thẳng d
Chọn D.
Câu 22 (NB):
Hướng dẫn:
Vẽ đồ thị hoặc thử các đáp án
Cách giải:
\(\left( {0,2} \right)\) thỏa mãn 3 phương trình trong hệ phương trình nên chọn D
Chọn D.
Câu 23 (TH):
Hướng dẫn:
Sử dụng định lí Sin trong tam giác \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).
Cách giải:
Sử dụng định lí Sin trong tam giác \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2R\sin A}\\{b = 2R\sin B}\\{c = 2R\sin C}\end{array}} \right.\).
Theo giả thiết ta có:
\(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} b + c = 2a}\\{ \Leftrightarrow 2R\sin B + 2R\sin C = 2.2R\sin A}\\{ \Leftrightarrow \sin B + \sin C = 2\sin A.}\end{array}\)
Chọn B.
Câu 24 (TH):
Hướng dẫn:
Sử dụng công thức \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = BM.BA.\cos \left( {\overrightarrow {BM} ,\overrightarrow {BA} } \right).\)
Cách giải:
Ta có: \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} – \frac{1}{2}\overrightarrow {BC} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} – \frac{1}{2}BC.BA.\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right).\)
Vì tam giác ABC đều nên \(\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \angle ABC = {60^0}\).
\( \Rightarrow \overrightarrow {BM} .\overrightarrow {BA} = – \frac{1}{2}.4.4.\frac{{\sqrt 3 }}{2} = {\rm{ \;}} – 4\sqrt 3 .\)
Chọn B.
Câu 25 (NB):
Hướng dẫn:
Xác định số gần đúng a và độ chính xác d.
Tính số đúng \(\bar a = a \pm d \Rightarrow a – d \le \bar a \le a + d\).
Cách giải:
Gọi \(\bar a\) là chiều dài đúng của dây cầu \( \Rightarrow \bar a = 152m \pm 0,2m\).
\(\begin{array}{*{20}{l}}{ \Rightarrow 152 – 0,2 \le \bar a \le 152 + 0,2}\\{ \Leftrightarrow 151,8 \le \bar a \le 152,2}\end{array}\)
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m.
Chọn A.
Câu 26 (TH):
Hướng dẫn:
Đổi sang đơn vị m.
Tính diện tích hình chữ nhật bằng dài nhân rộng.
Cách giải:
Diện tích hình chữ nhật là
\(\begin{array}{*{20}{l}}{\left( {2 \pm 0,01} \right)\left( {5 \pm 0,02} \right)}\\{ = 10 \pm \left( {0,04 + 0,05 + 0,01.0,02} \right)}\\{ = 10 \pm 0,0902}\end{array}\)
=> diện tích hình chữ nhật là \(\bar S = \)10m2, độ chính xác là d = 0,0902m2
=> Sai số tuyệt đối: \(\Delta {\rm{ \;}} \le 0,0902{\mkern 1mu} {\mkern 1mu} \left( {{m^2}} \right) = 902{\mkern 1mu} {\mkern 1mu} \left( {c{m^2}} \right)\).
Vậy diện tích hình chữ nhật là 10m2 và sai số tuyệt đối là 900cm2.
Chọn C.
Câu 27 (TH):
Hướng dẫn:
Khoảng biến thiên, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.
Cách giải:
Giá trị lớn nhất trong mẫu số liệu là 19.
Giá trị nhỏ nhất trong mẫu số liệu là 2.
Vậy khoảng biến thiên R = 19 – 2 = 17.
Chọn C.
Câu 28 (VD):
Hướng dẫn:
Sử dụng công thức \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) – n\left( {A \cap B} \right) – n\left( {B \cap C} \right) – n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right)\).
Cách giải:
Gọi A là tập hợp các bạn đăng kí tiết mục tốp ca \( \Rightarrow n\left( A \right) = 7.\)
B là tập hợp các bạn đăng kí tiết mục múa \( \Rightarrow n\left( B \right) = 6.\)
C là tập hợp các bạn đăng kí tiết mục diễn kịch \( \Rightarrow n\left( C \right) = 8.\)
\( \Rightarrow A \cap B:\) tập hợp các bạn đăng kí cả 2 tiết mục tốp ca và múa \( \Rightarrow n\left( {A \cap B} \right) = 3.\)
\(A \cap C\): tập hợp các bạn đăng kí cả 2 tiết mục tốp ca và diễn kịch \( \Rightarrow n\left( {A \cap C} \right) = 4.\)
\(B \cap C\): tập hợp các bạn đăng kí cả 2 tiết mục múa và diễn kịch \( \Rightarrow n\left( {B \cap C} \right) = 2.\)
\(A \cap B \cap C\): tập hợp các bạn đăng kí cả 3 tiết mục tốp ca, múa và diễn kịch \( \Rightarrow n\left( {A \cap B \cap C} \right) = 1.\)
\(A \cup B \cup C\): tập hợp các bạn đăng kí ít nhất 1 tiết mục.
Ta có: \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) – n\left( {A \cap B} \right) – n\left( {B \cap C} \right) – n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right)\)
\( \Rightarrow n\left( {A \cup B \cup C} \right) = 7 + 6 + 8 – 3 – 4 – 2 + 1 = 13.\)
Chọn B.
Câu 29 (TH):
Hướng dẫn:
Sử dụng hai vectơ bằng nhau, đưa về hai vectơ chung điểm đầu và cuối, sử dụng quy tắc ba điểm.
Cách giải:
Ta có: \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} {\rm{ \;}} = \overrightarrow {OD} {\rm{ \;}} + \overrightarrow {AB} {\rm{ \;}} = \overrightarrow {OD} {\rm{ \;}} + \overrightarrow {DC} {\rm{ \;}} = \overrightarrow {OC} \).
\( \Rightarrow \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} } \right| = \left| {\overrightarrow {OC} } \right| = OC\).
Áp dụng định lí Pytago ta có:
\(AC = \sqrt {A{B^2} + B{C^2}} {\rm{ \;}} = \sqrt {{{\left( {4a} \right)}^2} + {{\left( {3a} \right)}^2}} {\rm{ \;}} = 5a \Rightarrow OC = \frac{1}{2}AC = \frac{5}{2}a.\)
Vậy \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} } \right| = OC = \frac{5}{2}a.\)
Chọn C.
Câu 30 (TH):
Hướng dẫn:
Sử dụng định nghĩa tích vô hướng của hai vectơ: \(\vec a.\vec b{\rm{ \;}} = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\).
Cách giải:
Ta có:
\(\begin{array}{l}\vec a.\vec b = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow 2\vec a.\vec b = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow – \left| {\vec a} \right|.\left| {\vec b} \right| = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow \left| {\vec a} \right|.\left| {\vec b} \right|\left[ {1 + 2\cos \left( {\vec a,\vec b} \right)} \right] = 0\\ \Leftrightarrow \cos \left( {\vec a,\vec b} \right) = – \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} \vec a \ne \vec 0,{\mkern 1mu} {\mkern 1mu} \vec b \ne \vec 0} \right)\end{array}\)
\( \Leftrightarrow \left( {\vec a,\vec b} \right) = {120^0}.\)
Chọn B.
Phần 2: Tự luận (4 điểm)
Câu 1 (VD):
Hướng dẫn:
a) Gọi I là trung điểm của BC. Chứng minh M là trung điểm của BI.
Sử dụng quy tắc ba điểm, công thức trung điểm.
b) Sử dụng điều kiện để hai vectơ cùng phương.
Cách giải:
a) Gọi I là trung điểm của BC.
Ta có: \(3\overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow 3MB = MC \Rightarrow MB = \frac{1}{4}BC = \frac{1}{2}BI\).
=> M là trung điểm của BI.
Khi đó ta có:
\(\begin{array}{*{20}{l}}{\overrightarrow {MG} = \overrightarrow {MI} + \overrightarrow {IG} = \frac{1}{4}\overrightarrow {BC} – \frac{1}{3}\overrightarrow {AI} }\\{ = \frac{1}{4}\left( {\overrightarrow {AC} – \overrightarrow {AB} } \right) – \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)}\\{ = \frac{1}{4}\overrightarrow {AC} – \frac{1}{4}\overrightarrow {AB} – \frac{1}{6}\overrightarrow {AB} – \frac{1}{6}\overrightarrow {AC} }\\{ = \frac{1}{{12}}\overrightarrow {AC} – \frac{5}{{12}}\overrightarrow {AB} {\mkern 1mu} {\mkern 1mu} \left( {dpcm} \right).}\end{array}\)
b) Đặt \(\overrightarrow {AK} {\rm{ \;}} = x\overrightarrow {AC} {\mkern 1mu} {\mkern 1mu} \left( {x > 0} \right)\), ta có:
\(\begin{array}{*{20}{l}}{\overrightarrow {GK} {\rm{ \;}} = \overrightarrow {AK} {\rm{ \;}} – \overrightarrow {AG} {\rm{ \;}} = x\overrightarrow {AC} {\rm{ \;}} – \frac{2}{3}\overrightarrow {AI} }\\{ = x\overrightarrow {AC} {\rm{ \;}} – \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right) = \left( {x – \frac{1}{3}} \right)\overrightarrow {AC} {\rm{ \;}} – \frac{1}{3}\overrightarrow {AB} }\end{array}\)
Vì M, G, K thẳng hàng nên \(\frac{{x – \frac{1}{3}}}{{\frac{1}{{12}}}} = \frac{{ – \frac{1}{3}}}{{ – \frac{5}{{12}}}} \Leftrightarrow x = \frac{2}{5}.\)
Vậy \(\overrightarrow {AK} {\rm{\;}} = \frac{2}{5}\overrightarrow {AC} \) nên \(AK = \frac{2}{5}AC \Rightarrow \frac{{KA}}{{KC}} = \frac{2}{3}.\)
Câu 2 (VD):
Hướng dẫn:
a)
* Số trung bình của mẫu số liệu \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2},{\mkern 1mu} {\mkern 1mu} ….,{\mkern 1mu} {\mkern 1mu} {x_n}\) kí hiệu là \(\bar x\), được tính bằng công thức:
\(\bar x = \frac{{{x_2} + {x_2} + … + {x_k}}}{n}\)
* Tìm trung vị của mẫu số liệu.
Để tìm trung vị của mẫu số liệu, ta thực hiện như sau:
– Sắp xếp các giá trị trong mẫu số liệu theo thứ tự không giảm.
– Nếu giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.
b) So sánh và kết luận.
Cách giải:
a)
* Số trung bình của dãy số trên là:
\(\bar x{\rm{ \;}} = \frac{{\begin{array}{*{20}{l}}{190174 + 81182 + 19728 + 19048 + 8155 + 6103 + 5807 + }\\{4544 + 3760 + 3297 + 2541 + 2000 + 1934 + 1602 + 1195}\end{array}}}{{15}} \approx 23{\mkern 1mu} 404,67\).
* Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
1 195 1 602 1 934 2 000 2 541 3 297 3 760 4 544
5 807 6 103 8 155 19 048 19 728 81 182 190 174
Cỡ mẫu là n = 15 lẻ nên số trung vị là \({M_e} = 4{\mkern 1mu} 544\).
b) Số trung bình lớn hơn nhiều so với số trung vị là do trong dãy số có một giá trị rất lớn là 190 174. Trung vị không bị ảnh hưởng bởi giá trị “bất thường” này.
Câu 3 (VDC):
Hướng dẫn:
Ta thường dùng các chữ cái in hoa để kí hiệu tập hợp và chữ cái in thường để kí hiệu phần tử thuộc tập hợp.
Cách giải:
Ta có
\(\begin{array}{l}S = G{B^2} + G{C^2} + 9G{A^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\left( {\frac{2}{3}{m_b}} \right)^2} + {\left( {\frac{2}{3}{m_c}} \right)^2} + 9.{\left( {\frac{2}{3}{m_a}} \right)^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}{m_b}^2 + \frac{4}{9}{m_c}^2 + 4{m_a}^2\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}.\left( {\frac{{2{a^2} + 2{c^2} – {b^2}}}{4} + \frac{{2{a^2} + 2{b^2} – {c^2}}}{4}} \right) + 4.\frac{{2{b^2} + 2{c^2} – {a^2}}}{4}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}.\frac{{4{a^2} + {b^2} + {c^2}}}{4} + 2{b^2} + 2{c^2} – {a^2}\end{array}\)
\(\begin{array}{l}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{{4{a^2} + {b^2} + {c^2}}}{9} + 2{b^2} + 2{c^2} – {a^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{{19}}{9}\left( {{b^2} + {c^2}} \right) – \frac{5}{9}{a^2}\end{array}\)
Theo giả thiết ta có: \(4\sin A\tan A = \sin B\sin C \Leftrightarrow 4{\sin ^2}A = \sin B\sin C\cos A{\mkern 1mu} {\mkern 1mu} \left( * \right)\)
Áp dụng định lí sin trong tam giác ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\sin A = \frac{a}{{2R}}}\\{\sin B = \frac{b}{{2R}}}\\{\sin C = \frac{c}{{2R}}}\end{array}} \right.\)
Thay vào (*) ta có:
\(\begin{array}{*{20}{l}}{\left( * \right) \Leftrightarrow 4{{\left( {\frac{a}{{2R}}} \right)}^2} = \frac{b}{{2R}}.\frac{c}{{2R}}\cos A}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Leftrightarrow 4.\frac{{{a^2}}}{{4{R^2}}} = \frac{{bc}}{{4{R^2}}}\cos A}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Leftrightarrow 4{a^2} = bc\cos A}\end{array}\)
Lại theo định lí cosin trong tam giác ABC ta có:
\(\begin{array}{*{20}{l}}{{a^2} = {b^2} + {c^2} – 2bc\cos A}\\{ \Rightarrow bc\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{2}}\end{array}\)
Khi đó ta có:
\(\begin{array}{*{20}{l}}{\left( * \right) \Leftrightarrow 4{a^2} = \frac{{{b^2} + {c^2} – {a^2}}}{2}}\\{ \Leftrightarrow 8{a^2} = {b^2} + {c^2} – {a^2}}\\{ \Leftrightarrow 9{a^2} = {b^2} + {c^2}}\end{array}\)
Do đó: \(S = \frac{{19}}{9}\left( {{b^2} + {c^2}} \right) – \frac{5}{9}{a^2} = \frac{{19}}{9}.9{a^2} – \frac{5}{9}{a^2} = \frac{{166{a^2}}}{9} = 166.\)
Vậy S = 166.