Đáp án Đề bài Đề thi học kì 1 Toán 10 – Đề số 6 – Đề thi đề kiểm tra Toán lớp 10 Chân trời sáng tạo.
Câu hỏi/Đề bài:
I. Trắc nghiệm (7 điểm)
Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 – 3x} – \sqrt {x – 1} .\)
A. \({\rm{D}} = \left[ {1;2} \right].\) B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = \left[ {1;3} \right].\) D. \({\rm{D}} = \left[ { – 1;2} \right].\)
Câu 2: Mệnh đề phủ định của mệnh đề “\(\forall x \in \mathbb{R},\,\,x – 2 > 5\)” là:
A. “\(\exists x \in \mathbb{R},\,\,x – 2 \le 5\)”. B. “\(\exists x \in \mathbb{R},\,\,x – 2 \ge 5\)”. C. “\(\forall x \in \mathbb{R},\,\,x – 2 \le 5\)”. D. “\(\forall x \in \mathbb{R},\,\,x – 2 \ge 5\)”.
Câu 3: Cho tập hợp \(D = \left\{ {x \in {\mathbb{N}^*}|x\left( {x – 2} \right)\left( {x – 3} \right) = 0} \right\}\). Viết lại tập hợp D dưới dạng liệt kê các phần tử của tập hợp đó.
A. D = {2;3}. B. D = {0;1;2}. C. D = {1;2}. D. D = {0;2;3}.
Câu 4: Xét sự biến thiên của hàm số \(y = \frac{1}{{{x^2}}}\). Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên \(\left( { – \infty ;0} \right)\), nghịch biến trên \(\left( {0; + \infty } \right)\).
B. Hàm số đồng biến trên \(\left( {0; + \infty } \right)\), nghịch biến trên \(\left( { – \infty ;0} \right)\).
C. Hàm số đồng biến trên \(\left( { – \infty ;1} \right)\), nghịch biến trên \(\left( {1; + \infty } \right)\).
D. Hàm số nghịch biến trên\(\left( { – \infty ;0} \right) \cup \left( {0; + \infty } \right)\).
Câu 5: Cho hai tập hợp \(A = \left( { – \infty ; – 2} \right]\) và \(B = \left( { – 3;5} \right]\). Tìm mệnh đề sai.
A. \(A \cap B = \left( { – 3; – 2} \right].\) B. \(A\backslash B = \left( { – \infty ; – 3} \right)\). C. \(A \cup B = \left( { – \infty ;5} \right]\). D. \(B\backslash A = \left( { – 2;5} \right]\).
Câu 6: Trong các tập hợp sau, tập hợp nào là tập con của tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\)?
A. \({A_1} = \left\{ {1;6} \right\}.\) B. \({A_2} = \left\{ {0;1;3} \right\}.\) C. \({A_3} = \left\{ {4;5} \right\}.\) D. \({A_4} = \left\{ 0 \right\}.\)
Câu 7: Cho parabol \(\left( P \right):y = 3{x^2} – 2x + 1\). Điểm nào sau đây là đỉnh của \(\left( P \right)\)?
A. \(I\left( {0;1} \right)\). B. \(I\left( {\frac{1}{3};\,\frac{2}{3}} \right)\). C. \(I\left( { – \frac{1}{3};\,\frac{2}{3}} \right)\). D. \(I\left( {\frac{1}{3};\, – \frac{2}{3}} \right)\).
Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. \(2{x^3} + 1 \ge y + 2{x^2}.\) B. \(2x – 6y + 5 < 2x – 6y + 3.\)
C. \(2{x^2} + 1 \ge y + 2{x^2}.\) D. \(4{x^2} < 2x + 5y – 6.\)
Câu 9: Điểm nào dưới đây thuộc miền nghiệm của bất phương trình \(3x + 2y < 10\)?
A. (5;1). B. (4;2). C. (1;5). D. (1;2).
Câu 10: Trong tam giác EFG, chọn mệnh đề đúng.
A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\)
C. \(E{F^2} = E{G^2} + F{G^2} – 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} – 2EG.FG.\cos G.\)
Câu 11: Cho parabol \(\left( P \right):\,y = {x^2} + mx + n\) (\(m,\,n\) là tham số). Xác định \(m,\,n\) để \(\left( P \right)\)nhận đỉnh \(I\left( {2;\, – 1} \right)\).
A. \(m = 4,\,n = – 3\). B. \(m = 4,\,n = 3\). C. \(m = – 4,\,n = – 3\). D. \(m = – 4,\,n = 3\).
Câu 12: Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là:
A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\)
Câu 13: Cho hàm số \(f\left( x \right) = a{x^2} + bx + c\)đồ thị như hình. Tính giá trị biểu thức \(T = {a^2} + {b^2} + {c^2}\).
A. \(0\). B. \(26\). C. \(8\). D. \(20\).
Câu 14: Trong các hệ bất phương trình sau, hệ bất phương trình nào là hệ bất phương trình bậc nhất hai ẩn?
A. \(\left\{ \begin{array}{l}{x^2} – 4 \ge 0\\3x + 4y < 2\end{array} \right.\). B. \(x – y > 0\). C. \(\left\{ \begin{array}{l}{y^2} + 2y – 3 > 0\\5x – y > 2\end{array} \right.\). D. \(\left\{ \begin{array}{l}x – 4 \ge y\\3x + 4y < 5\end{array} \right.\).
Câu 15: Giá trị của biểu thức \(T = 2 + {\sin ^2}{90^0} + 2{\cos ^2}{60^0} – 3{\tan ^2}{45^0}\) bằng:
A. 3. B. \( – \frac{1}{2}\). C. 1. D. \(\frac{1}{2}\).
Câu 16: Cho tam giác ABC có BC = a, AC = b, AB = c, có R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và hc là độ dài đường cao xuất phát từ đỉnh C. Chọn mệnh đề sai.
A. \({S_{ABC}} = ab\sin C.\) B. \({S_{ABC}} = pr.\) C. \({S_{ABC}} = \frac{{abc}}{{4R}}.\) D. \({S_{ABC}} = \frac{1}{2}c.{h_c}.\)
Câu 17: Tam giác ABC có BC = 1, AC = 3, \(\angle C = {60^0}\). Tính độ dài cạnh AB.
A. \(\sqrt {13} .\) B. \(\sqrt 7 .\) C. \(\frac{{\sqrt {34} }}{2}.\) D. \(\frac{{\sqrt {46} }}{2}.\)
Câu 18: Bảng biến thiên nào dưới đây là của hàm số \(y = – {x^2} + 2x + 2\)?
A. . B. .
C. . D. .
Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?
A. \(\left( {0;1} \right).\) B. \(\left( {1; + \infty } \right).\) C. \(\left[ {1; + \infty } \right).\) D. \(\left( {0;1} \right].\)
Câu 20: Cho \(\alpha \) và \(\beta \) là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?
A. \(\sin \alpha = \sin \beta .\) B. \(\cos \alpha = – \cos \beta .\) C. \(\tan \alpha = – \tan \beta .\) D. \(\cot \alpha = \cot \beta .\)
Câu 21: Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng?
`
A. \(a > 0,{\rm{ }}b < 0,{\rm{ }}c < 0\). B. \(a > 0,{\rm{ }}b 0\). C. \(a > 0,{\rm{ }}b > 0,{\rm{ }}c > 0\). D. \(a < 0,{\rm{ }}b < 0,{\rm{ }}c < 0\).
Câu 22: Tam giác ABC có AB = 4, BC = 6, \(AC = 2\sqrt 7 \). Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM.
A. \(AM = 3\sqrt 2 .\) B. \(AM = 4\sqrt 2 .\) C. \(AM = 2\sqrt 3 .\) D. \(AM = 3.\)
Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?
A. \(2x + y < 1.\) B. \(2x – y > 1.\) C. \(x + 2y > 1.\) D. \(2x + y > 1.\)
Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = – 2\sqrt 2 \).
A. \( – \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\)
Câu 25: Một ca nô xuất phát từ cảng A, chạy theo hướng đông với vận tốc 50 km/h. Cùng lúc đó, một tàu cá, xuất phát từ A, chạy theo hướng N30°E với vận tốc 40 km/h. Sau 3 giờ, hai tàu cách nhau bao nhiêu kilômét?
A. 135,7km. B. 237,5km. C. 110km. D. 137,5km.
Câu 26. Sử dụng máy tính bỏ túi, hãy viết giá trị gần đúng của \(\sqrt 3 \) chính xác đến hàng phần nghìn.
A. 1,7320. B. 1,732. C. 1,733. D. 1,731.
Câu 27. Đo độ cao một ngọn cây là \(h = 347,13{\rm{m}} \pm 0,2{\rm{m}}.\) Hãy viết số quy tròn của số gần đúng 347,13.
A. 345. B. 347. C. 348. D. 346.
Câu 28: Ba nhóm học sinh gồm 20 người, 15 người, 25 người. Cân nặng trung bình của mỗi nhóm lần lượt là 50kg, 38kg, 40kg. Cân nặng trung bình của cả ba nhóm học sinh là:
A. 41,6kg. B. 42,8kg. C. 41,8kg. D. Đáp số khác.
Câu 29: Có 100 học sinh dự thi học sinh giỏi Toán (điểm 20). Kết quả như sau:
Nhận xét nào sau đây là đúng?
A. Phương sai lớn hơn 4, độ lệch chuẩn lớn hơn 2
B. Phương sai lớn hơn 5, độ lệch chuẩn lớn hơn 2
C. Phương sai nhỏ hơn 5, độ lệch chuẩn lớn hơn 2
D. Phương sai nhỏ hơn 4, độ lệch chuẩn nhỏ hơn 2
Câu 30. Cho hình chữ nhật \(ABCD.\) Khẳng định nào sau đây đúng?
A. \(\overrightarrow {AC} = \overrightarrow {BD} .\) B. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \vec 0.\)
C. \(\left| {\overrightarrow {AB} – \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} } \right|.\) D. \(\left| {\overrightarrow {BC} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} – \overrightarrow {AB} } \right|.\)
Câu 31. Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} – \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \). Mệnh đề nào sau đây sai?
A. \(MABC\) là hình bình hành. B. \(\overrightarrow {AM} + \overrightarrow {AB} = \overrightarrow {AC} .\)
C. \(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BM} .\) D. \(\overrightarrow {MA} = \overrightarrow {BC} .\)
Câu 32. Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
A.\(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {BC} \) B. \(\overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {AB} \)
C. \(\overrightarrow {AC} – \overrightarrow {BD} = 2\overrightarrow {CD} \) D. \(\overrightarrow {AC} – \overrightarrow {AD} = \overrightarrow {CD} \)
Câu 33. Cho tam giác OAB vuông cân tại O, cạnh \(OA = a\). Khẳng định nào sau đây sai?
A.\(\left| {3\overrightarrow {OA} + 4\overrightarrow {OB} } \right| = 5a\) B. \(\left| {2\overrightarrow {OA} } \right| + \left| {3\overrightarrow {OB} } \right| = 5a\)
C. \(\left| {7\overrightarrow {OA} – 2\overrightarrow {OB} } \right| = 5a\) D. \(\left| {11\overrightarrow {OA} } \right| – \left| {6\overrightarrow {OB} } \right| = 5a\)
Câu 34. Cho tam giác \(ABC\) có \(BC = a,\,{\rm{ }}CA = b,{\rm{ }}AB = c.\) Gọi \(M\) là trung điểm cạnh \(BC.\) Tính \(\overrightarrow {AM} .\overrightarrow {BC} .\)
A. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{b^2} – {c^2}}}{2}.\) B. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2}}}{2}.\)
C. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2} + {a^2}}}{3}.\) D. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2} – {a^2}}}{2}.\)
Câu 35. Cho hình vuông \(ABCD\) cạnh \(a.\) Tính \(P = \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} + \overrightarrow {BA} } \right).\)
A. \(P = 2\sqrt 2 a.\) B. \(P = 2{a^2}.\) C. \(P = {a^2}.\) D. \(P = – 2{a^2}.\)
II. Tự luận (3 điểm)
Câu 1: (1,5 điểm) Cho tam giác ABC, M là điểm bất kỳ.
a) Chứng minh rằng \(\overrightarrow {MA} .\overrightarrow {BC} + \overrightarrow {MB} .\overrightarrow {CA} + \overrightarrow {MC} .\overrightarrow {AB} = 0\)
b) Gọi G là trọng tâm tam giác ABC. Chứng minh: \(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\)
c) Chứng minh rằng \(G{A^2} + G{B^2} + G{C^2} = \frac{1}{3}({a^2} + {b^2} + {c^2})\), với a, b, c là độ dài 3 cạnh của tam giác.
Câu 2: (1 điểm) Từ hai vị trí \(A\) và \(B\) của một tòa nhà, người ta quan sát đỉnh \(C\) của ngọn núi. Biết rằng độ cao \(AB = 70{\rm{m}}\), phương nhìn \(AC\) tạo với phương nằm ngang góc \({30^0}\), phương nhìn \(BC\) tạo với phương nằm ngang góc \({15^0}30’\). Tìm độ cao của ngọn núi đó có độ cao so với mặt đất.
Câu 3: (0,5 điểm) Xác định hàm số \(y = a{x^2} + bx + c\)biết đồ thị của hàm số cắt trục tung tại điểm có tung độ là \( – 3\)và giá trị nhỏ nhất của hàm số là \( – \frac{{25}}{8}\)tại \(x = \frac{1}{4}\).
—–HẾT—–