Trả lời Lời giải Đề thi học kì 1 Toán 10 – Đề số 9 – Đề thi đề kiểm tra Toán lớp 10 Cánh diều.
Câu hỏi/Đề bài:
I. Trắc nghiệm (6 điểm)
1. C |
2. C |
3. C |
4. C |
5. B |
6. D |
7.A |
8. D |
9. A |
10. D |
11. A |
12. C |
13. B |
14. C |
15. D |
16. C |
17. B |
18. A |
19. D |
20. B |
21. D |
22. C |
23. D |
24. C |
25. C |
26. D |
27. C |
28. A |
29.A |
30. A |
|
|
Câu 1 (NB):
Hướng dẫn:
- \(\sqrt {P(x)} \) có nghĩa khi \(P(x) \ge 0\).
- \(\frac{{Q(x)}}{{\sqrt {P(x)} }}\) có nghĩa khi \(P(x) > 0\).
Cách giải:
Hàm số \(y = \sqrt {6 – 3x} + \frac{1}{{\sqrt {x – 1} }}\) xác định khi \(\left\{ \begin{array}{l}6 – 3x \ge 0\\x – 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2\)
Vậy tập xác định \(D = (1;2]\)
Chọn C.
Câu 2 (TH):
Hướng dẫn:
Phủ định của mệnh đề “\(\forall x \in K,\,\,P\left( x \right)\)” là mệnh đề “\(\exists x \in K,\,\,\overline {P\left( x \right)} \)”.
Cách giải:
Mệnh đề phủ định của mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)” là “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.
Chọn C.
Câu 3 (TH):
Hướng dẫn:
Thay tọa độ các điểm vào hàm số
Cách giải:
Với \(x = 6,x = 0\)thì \(y = \frac{{\sqrt {x – 2} – 2}}{{x – 6}}\) không xác định. Suy ra điểm \((6;0)\) và \((0;6)\)không thuộc đồ thị hàm số
Với \(x = 2\) thì \(y = \frac{{\sqrt {2 – 2} – 2}}{{2 – 6}} = 0,5 \ne – 0,5\). Suy ra điểm \((2; – 0,5)\)không thuộc đồ thị hàm số, điểm \((2;0,5)\) thuộc đồ thị hàm số
Chọn C.
Câu 4 (TH):
Hướng dẫn:
Tập hợp rỗng không chứa phần tử nào.
Cách giải:
+) Xét đáp án A: \(\left\{ {\begin{array}{*{20}{l}}{x \in \mathbb{R}}\\{\left| x \right| < 1}\end{array}} \right. \Rightarrow {\rm{\;}} – 1 < x < 1\) \( \Rightarrow A = \left( { – 1;{\mkern 1mu} {\mkern 1mu} 1} \right) \ne \emptyset \)
\( \Rightarrow \) Loại đáp án A.
+) Xét đáp án B: \(6{x^2} – 7x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = \frac{1}{6}}\end{array}} \right.\) \( \Rightarrow A = \left\{ 1 \right\} \ne \emptyset \)
\( \Rightarrow \) Loại đáp án B.
+) Xét đáp án C: \({x^2} – 4x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2 + \sqrt 2 }\\{x = 2 – \sqrt 2 }\end{array}} \right.\) \( \Rightarrow A = \emptyset \)
Chọn C.
Câu 5 (VD):
Hướng dẫn:
Thực hiện các phép toán trên tập hợp. Sử dụng trục số.
Cách giải:
+) \(A \cap B = \left( { – 3;2} \right]\)
=> A đúng.
+) \(A\backslash B = \left( { – \infty ; – 3} \right]\)
=> B sai.
+) \(A \cup B = \left( { – \infty ;5} \right]\)
=> C đúng.
+) \(B\backslash A = \left( {2;5} \right]\).
=> D đúng.
Chọn B.
Câu 6 (TH):
Hướng dẫn:
Cho tập hợp B có n phần tử. Số tập hợp con của B là \({2^n}\)
Cách giải:
Tập hợp \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}\) có 5 phần tử.
Số tập hợp con của tập B là: \({2^5} = 32\)
Chọn D.
Câu 7 (NB):
Cách giải:
Với \(a > 0\), ta có bảng biến thiên
Hàm số nghịch biến trên \(\left( { – \infty ;\, – \frac{b}{{2a}}} \right).\)
Chọn A.
Câu 8 (TH):
Hướng dẫn:
Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là \(ax + by + c 0\), \(ax + by + c \le 0\), \(ax + by + c \ge 0\), trong đó a, b, c là các số cho trước sao cho \({a^2} + {b^2} \ne 0\).
Cách giải:
Bất phương trình bậc nhất hai ẩn là \(x + y \ge 0\).
Chọn D.
Câu 9 (TH):
Hướng dẫn:
Thay tọa độ các điểm ở các đáp án vào bất phương trình.
Cách giải:
Thay tọa độ điểm A(1;-1) ta có: \(\left( {1 + \sqrt 3 } \right) + \left( {1 – \sqrt 3 } \right) = 2 \ge 2\) (Đúng).
Vậy điểm A thuộc miền nghiệm của bất phương trình.
Chọn A.
Câu 10 (NB):
Hướng dẫn:
Sử dụng định lí cosin trong tam giác: \({a^2} = {b^2} + {c^2} – 2bc.\cos A.\)
Cách giải:
\(E{F^2} = E{G^2} + F{G^2} – 2EG.FG.\cos G\) là mệnh đề đúng.
Chọn D.
Câu 11 (VD):
Cách giải:
Ta có:
\(AC = BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)
Lại có:
\(\left\{ \begin{array}{l}\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \end{array} \right.\)
\(\begin{array}{l} \Rightarrow \overrightarrow {BK} .\overrightarrow {AC} = \left( {\overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\\ = \overrightarrow {BA} .\overrightarrow {AB} + \overrightarrow {BA} .\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AD} \\ = – {a^2} + 0 + 0 + \frac{1}{2}{\left( {a\sqrt 2 } \right)^2}\\ = 0\end{array}\)
Chọn A.
Câu 12 (VD):
Hướng dẫn:
Tính sinA.
Tính diện tích tam giác ABC: \(S = \frac{1}{2}bc.\sin A.\)
Sử dụng định lí cosin trong tam giác tính a: \({a^2} = {b^2} + {c^2} – 2bc.\cos A.\)
Sử dụng công thức tính diện tích tam giác: \(S = \frac{1}{2}a{h_a}\), từ đó tính \({h_a}\).
Cách giải:
Ta có:
\(\begin{array}{l}{\sin ^2}A + {\cos ^2}A = 1\\ \Leftrightarrow {\sin ^2}A + {\left( {\frac{3}{5}} \right)^2} = 1\\ \Leftrightarrow {\sin ^2}A = \frac{{16}}{{25}}\end{array}\)
Vì \({0^0} < A 0 \( \Rightarrow \sin A = \frac{4}{5}.\)
Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A. = \frac{1}{2}.7.5.\frac{4}{5} = 14.\)
Áp dụng định lí cosin trong tam giác ABC ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} – 2bc.\cos A.\\\,\,\,\,\,\, = {7^2} + {5^2} – 2.7.5.\frac{3}{5}\\\,\,\,\,\,\, = 32\\ \Rightarrow a = 4\sqrt 2 .\end{array}\)
Lại có: \(S = \frac{1}{2}a{h_a} \Rightarrow {h_a} = \frac{{2S}}{a} = \frac{{2.14}}{{4\sqrt 2 }} = \frac{{7\sqrt 2 }}{2}.\)
Chọn C.
Câu 13 (TH):
Cách giải:
Hàm số bậc hai cần tìm có phương trình: \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
Hàm số bậc hai có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; – 4} \right)\)
\( \Rightarrow \left\{ \begin{array}{l}\frac{{ – b}}{{2a}} = \frac{5}{2}\\a.\frac{{25}}{4} + b.\frac{5}{2} + c = \frac{1}{2}\\a + b + c = – 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{ – b}}{a} = 5\\25a + 10b + 2c = 2\\a + b + c = – 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{\rm{a + b = 0}}\\25a + 10b + 2c = 2\\a + b + c = – 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = – 2\\b = 10\\c = – 12\end{array} \right.\)
Chọn B.
Câu 14 (TH):
Hướng dẫn:
Thay tọa độ các điểm vào hệ bất phương trình.
Cách giải:
Dễ thấy các điểm \(O\left( {0;0} \right)\), \(M\left( {1;0} \right)\), \(P\left( {0;2} \right)\) không thỏa mãn bất phương trình \(x + y + 1 < 0\) nên không thỏa mãn cả hệ bất phương trình.
Chọn C.
Câu 15 (TH):
Cách giải:
Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, – 1} \right)\) nên \(c = – 1\).
Tọa độ đỉnh \(I\left( {1\,\,;\, – 3} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} – \frac{b}{{2a}} = 1\\a{.1^2} + b.1 – 1 = – 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = – 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = – 4\end{array} \right.\).
Vậy parabol cần tìm là: \(y = 2{x^2} – 4x – 1\).
Chọn D.
Câu 16 (TH):
Hướng dẫn:
Sử dụng công thức tính diện tích tam giác \(S = \sqrt {p\left( {p – a} \right)\left( {p – b} \right)\left( {p – c} \right)} = pr\).
Cách giải:
Nửa chu vi tam giác đều cạnh a là \(p = \frac{{a + a + a}}{2} = \frac{{3a}}{2}\).
Tam giác đều cạnh a có diện tích \(S = \sqrt {\frac{{3a}}{2}\left( {\frac{{3a}}{2} – a} \right)\left( {\frac{{3a}}{2} – a} \right)\left( {\frac{{3a}}{2} – a} \right)} = \frac{{{a^2}\sqrt 3 }}{4}\).
Lại có \(S = pr \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{4}:\frac{{3a}}{2} = \frac{{a\sqrt 3 }}{6}\).
Chọn C.
Câu 17 (NB):
Hướng dẫn:
Sử dụng hệ quả định lí Cosin trong tam giác: \(\cos C = \frac{{A{C^2} + B{C^2} – A{B^2}}}{{2AC.BC}}\).
Cách giải:
Áp dụng hệ quả định lí Cosin trong tam giác ABC ta có:
\(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} – A{B^2}}}{{2AC.BC}}\\ \Leftrightarrow \cos {45^0} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + B{C^2} – {{\left( {\sqrt 2 } \right)}^2}}}{{2.\sqrt 3 .BC}}\\ \Leftrightarrow \sqrt 6 BC = B{C^2} + 1\\ \Leftrightarrow B{C^2} – \sqrt 6 BC + 1 = 0\\ \Leftrightarrow BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\end{array}\).
Chọn B.
Câu 18 (TH):
Hướng dẫn:
Số chính phương có các chữ số tận cùng là \(0,{\rm{ }}1,{\rm{ }}4,{\rm{ }}5,{\rm{ }}6,{\rm{ }}9\). Dùng loại trừ để đưa ra đáp án đúng.
Cách giải:
Hàm số \(y = – {x^2} + 2x – 1\) có \(a = – 1 < 0\), nên loại C,D.
Hoành độ đỉnh \({x_I} = – \frac{b}{{2a}} = – \frac{2}{{2.( – 1)}} = 1\)
Chọn A.
Câu 19 (NB):
Hướng dẫn:
Biểu diễn tập hợp trên trục số.
Cách giải:
Hình vẽ đã cho là minh họa cho tập hợp \(( – 3;5]\)
Chọn D.
Câu 20 (VD):
Cách giải:
Ta có \( – \frac{b}{{2a}} = \frac{1}{3}\) và \(a = – 3 < 0\). Suy ra hàm số đã cho nghịch biến trên khoảng \(\left( {\frac{1}{3}; + \infty } \right)\).
Mà \(\left[ {1;3} \right] \subset \left( {\frac{1}{3}; + \infty } \right)\).
Do đó trên đoạn \(\left[ {1;3} \right]\) hàm số đạt giá trị lớn nhất tại \(x = 1\), tức là \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = 0\).
Chọn B.
Câu 21 (TH):
Hướng dẫn:
Áp dụng công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\)
Cách giải:
Ta có \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ – 3}}{{3.2}} = – \frac{1}{2}\)
\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {120^o}\)
Chọn D.
Câu 22 (VD):
Hướng dẫn:
– Tính BC dựa vào định lí côsin trong tam giác cân ABC.
– Tính BM.
– Tính AM dựa vào định lí côsin trong tam giác ABM.
Cách giải:
\(BC = \sqrt {A{B^2} + A{C^2} – 2ABAC\cos {{120}^0}} = \sqrt {{a^2} + {a^2} – 2a.a.\left( { – \frac{1}{2}} \right)} = a\sqrt 3 {\rm{ }} \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\)
\(AM = \sqrt {A{B^2} + B{M^2} – 2AB.BM.cos{{30}^0}} = \sqrt {{a^2} + {{\left( {\frac{{2a\sqrt 3 }}{5}} \right)}^2} – 2a.\frac{{2a\sqrt 3 }}{5}.\frac{{\sqrt 3 }}{2}} = \frac{{a\sqrt 7 }}{5}\).
Chọn C.
Câu 23 (TH):
Hướng dẫn:
Tìm phương trình đường thẳng d. Loại đáp án.
Thay tọa độ điểm O(0;0) vào các bất phương trình chưa bị loại ở các đáp án, tiếp tục loại đáp án.
Cách giải:
Đường thẳng d đi qua điểm (3;0) nên loại đáp án A, B.
Ta thấy điểm O(0;0) không thuộc miền nghiệm của bất phương trình.
+ Thay tọa độ điểm O(0;0) vào biểu thức \(x – 2y\) ta có: \(0 – 2.0 = 0 < 3\)
Do đó bất phươn trình cần tìm là \(x – 2y > 3\)
Chọn D.
Câu 24 (TH):
Hướng dẫn:
Sử dụng công thức: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\)
Cách giải:
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow 1 + {\left( { – 2\sqrt 2 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\cos ^2}\alpha = \frac{1}{9}\\ \Leftrightarrow {\sin ^2}\alpha = 1 – \frac{1}{9} = \frac{8}{9}\\ \Leftrightarrow \sin \alpha = \pm \frac{{2\sqrt 2 }}{3}\end{array}\)
Vì \({0^0} < \alpha 0\).
Vậy \(\sin \alpha = \frac{{2\sqrt 2 }}{3}.\)
Chọn C.
Câu 25 (VD):
Hướng dẫn:
Áp dụng hệ quả định lí Sin trong tam giác ABC.
Cách giải:
Ta có: \(\angle ACB = {180^0} – {45^0} – {70^0} = {65^0}\)
Áp dụng hệ quả định lí Sin trong tam giác ABC ta có:
\(\begin{array}{l}\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{AC}}{{\sin {{70}^0}}} = \frac{{40}}{{\sin {{65}^0}}}\\ \Rightarrow AC = \frac{{40}}{{\sin {{65}^0}}}.\sin {70^0} \approx 41,47\,\,\left( m \right)\end{array}\)
Chọn C.
Câu 26 (VD):
Hướng dẫn:
Áp dụng quy tắc cộng vecto để tìm được vecto \(\vec u\).
Cách giải:
Vì ABCD là hình vuông nên ta có: \(AB = BC = CD = DA = 2\); \(AC = BD = a\sqrt 2 \).
Ta có:
\(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} – 3\overrightarrow {MD} \)
\({\mkern 1mu} = \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} } \right) – 3\overrightarrow {MD} \)
\({\mkern 1mu} = \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} {\rm{\;}} – 3\overrightarrow {MD} \)
\( = \overrightarrow {DA} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DC} \)
\( = \left( {\overrightarrow {DA} {\rm{\;}} + \overrightarrow {DC} } \right) + \overrightarrow {DB} \)
\( = \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DB} \)
\( = 2\overrightarrow {DB} \)
\( \Rightarrow \vec u = 2\overrightarrow {DB} \)
\( \Rightarrow \left| {\vec u} \right| = \left| {2.\overrightarrow {DB} } \right| = 2.a.\sqrt 2 {\rm{\;}} = 2\sqrt 2 a\)
Chọn D.
Câu 27 (VD):
Hướng dẫn:
Áp dụng tích vô hướng \(\overrightarrow a .\overrightarrow b = a.b.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)
Cách giải:
Ta có:
\(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a.\cos A = {a^2}\cos {60^ \circ } = \frac{1}{2}{a^2}\) => A đúng
\(\overrightarrow {AC} .\overrightarrow {CB} = AC.CB.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a.a.\cos {120^ \circ } = – \frac{1}{2}{a^2}\) => B đúng
+ \(AG = \frac{2}{3}AM;AM = AC.\sin C = a.\sin {60^ \circ } = \frac{{a\sqrt 3 }}{2}\)
\( \Rightarrow AG = BG = \frac{{a\sqrt 3 }}{3}\)
\(\overrightarrow {GA} .\overrightarrow {GB} = GA.GB.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right) = \frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3}.\cos {120^ \circ } = – \frac{1}{6}{a^2}\) => C sai.
\(\overrightarrow {AB} .\overrightarrow {AG} = AB.AG.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AG} } \right) = a.\frac{{a\sqrt 3 }}{3}.\cos {30^ \circ } = \frac{1}{2}{a^2}\) => D đúng.
Chọn C.
Câu 28 (NB):
Hướng dẫn:
Nhóm \(\overrightarrow {AB} ,\overrightarrow {BC} \); \(\overrightarrow {DC} ,\overrightarrow {AD} \), áp dụng quy tắc cộng vectơ.
Cách giải:
Ta có: \(\overrightarrow {AB} {\rm{ \;}} – \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} – \overrightarrow {AD} {\rm{ \;}} = \left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right) – \left( {\overrightarrow {AD} {\rm{ \;}} + \overrightarrow {DC} } \right) = \overrightarrow {AC} {\rm{ \;}} – \overrightarrow {AC} {\rm{ \;}} = \vec 0\).
Chọn A.
Câu 29 (NB):
Hướng dẫn:
Sử dụng quy tắc hình bình hành tính \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} \).
Tính độ dài vectơ vừa tìm được.
Cách giải:
Ta có: \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\).
Chọn A.
Câu 30 (TH):
Hướng dẫn:
Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ.
Cách giải:
\(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \)
\( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \)
Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\)
Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\).
Chọn A.
II. Tự luận (3 điểm)
Câu 1 (VD):
Hướng dẫn:
Áp dụng quy tắc hình bình hành.
Vật đứng yên khi tổng các lực tác động lên điểm bằng 0.
Cách giải:
Có cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M
\( \Rightarrow \) Tam giác MAB vuông cân tại M
Lấy điểm D sao cho MADB là hình vuông
\( \Rightarrow MD = \sqrt {M{A^2} + A{D^2}} {\rm{\;}} = \sqrt {M{A^2} + M{B^2}} {\rm{\;}} = 50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N\)
Vì vật đứng yên nên tổng các lực tác động lên điểm bằng 0
\( \Rightarrow \overrightarrow {{F_1}} {\rm{\;}} + \overrightarrow {{F_2}} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\) hay \(\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\)
\( \Rightarrow \overrightarrow {{F_3}} {\rm{\;}} = {\rm{\;}} – \left( {\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} } \right) = {\rm{\;}} – \overrightarrow {MD} \)
Vậy lực \(\overrightarrow {{F_3}} \) có hướng ngược với \(\overrightarrow {MD} \) và có cường độ bằng \(50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N \approx 70,71{\mkern 1mu} {\mkern 1mu} N\)
Câu 2 (VD):
Cách giải:
Ta có: \(\widehat {D{A_1}B} = {180^ \circ } – {49^ \circ } = {131^ \circ };\widehat {{A_1}D{B_1}} = {49^ \circ } – {35^ \circ } = {14^ \circ }\)
Áp dụng định lý sin trong tam giác \(D{A_1}{B_1}\) ta có:
\(\begin{array}{l}\frac{{{A_1}{B_1}}}{{\sin \widehat {{A_1}D{B_1}}}} = \frac{{D{B_1}}}{{\sin \widehat {D{A_1}{B_1}}}} \Leftrightarrow \frac{3}{{\sin {{14}^ \circ }}} = \frac{{D{B_1}}}{{\sin {{131}^ \circ }}}\\ \Rightarrow D{B_1} = \sin {131^ \circ }.\frac{3}{{\sin {{14}^ \circ }}}\end{array}\)
Lại có: \(\Delta D{C_1}{B_1}\) vuông tại \({C_1}\) nên \(D{C_1} = D{B_1}.\sin {B_1} = D{B_1}.\sin {35^ \circ }\)
\( \Rightarrow D{C_1} = \sin {131^ \circ }.\frac{3}{{\sin {{14}^ \circ }}}.\sin {35^ \circ } \approx 5,37\)
Chiều cao CD của tháp là \(5,37 + 2 = 7,37(m)\)
Vậy tháp cao khoảng 7,37m.
Câu 3 (VD):
Cách giải:
Parabol (P) \(y = a{x^2} + bx + c\) giao với Oy tại điểm có tọa độ \((0;c)\), do đó \(c = – 1\)
(P) có hoành độ đỉnh \({x_I} = – \frac{b}{{2a}} = 2 \Rightarrow b = – 4a\)
Điểm \(I(2;3)\) thuộc (P) nên \(a{.2^2} + b.2 – 1 = 3\) hay \(4a + 2b = 4\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}4a + 2b = 4\\b = – 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 4\\a = – 1\end{array} \right.\)
Vậy parabol cần tìm là \(y = – {x^2} + 4x – 1\)
* Vẽ parabol
Đỉnh \(I(2;3)\)
Trục đối xứng \(x = 2\)
Giao với Oy tại A(0;-1), lấy điểm B(4;-1) đối xứng với A qua trục đối xứng
Lấy điểm C(1;2) và D(3;2) thuộc đồ thị.