Trang chủ Lớp 10 Toán lớp 10 Đề thi đề kiểm tra Toán lớp 10 - Cánh diều Đề thi học kì 1 Toán 10 – Đề số 10...

[Đề bài] Đề thi học kì 1 Toán 10 – Đề số 10 Đề thi đề kiểm tra Toán lớp 10: Phần Trắc nghiệm (25 câu – 5 điểm) Trong các câu sau, có bao nhiêu câu là không phải là mệnh đề?

Giải chi tiết Đề bài Đề thi học kì 1 Toán 10 – Đề số 10 – Đề thi đề kiểm tra Toán lớp 10 Cánh diều.

Câu hỏi/Đề bài:

Phần 1: Trắc nghiệm (25 câu – 5 điểm)

Câu 1: Trong các câu sau, có bao nhiêu câu là không phải là mệnh đề?

a) Huế là một thành phố của Việt Nam.

b) Sông Hương chảy ngang qua thành phố Huế.

c) Hãy trả lời câu hỏi này!

d) \(5 + 19 = 24.\)

e) \(6 + 81 = 25.\)

f) Bạn có mang theo máy tính không?

g) \(x + 2 = 11.\)

A. 1. B. 2. C. 3. D. 4.

Câu 2: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau

Phương trình của parabol này là

A. \(y = – {x^2} + x – 1\). B. \(y = 2{x^2} + 4x + 1\). C. \(y = {x^2} – 2x – 1\). D. \(y = 2{x^2} – 4x – 1\).

Câu 3: Cho hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?

A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0.\) B. \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} .\)

C. \(\left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {DA} + \overrightarrow {DC} } \right|.\) D. \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AB} + \overrightarrow {CB} .\)

Câu 4: Lớp 10E có \(7\) học sinh giỏi Toán, \(5\) học sinh giỏi Lý, \(6\) học sinh giỏi Hóa, \(3\) học sinh giỏi cả Toán và Lý, \(4\) học sinh giỏi cả Toán và Hóa, \(2\) học sinh giỏi cả Lý và Hóa, \(1\) học sinh giỏi cả \(3\) môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10E là

A. \(9.\) B. \(10.\) C. \(18.\) D. \(28.\)

Câu 5: Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) – y + 3\) là nửa mặt phẳng chứa điểm:

A. \(\left( {3;0} \right).\) B. \(\left( {3;1} \right).\) C. \(\left( {2;1} \right).\) D. \(\left( {0;0} \right).\)

Câu 6: Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

A. \(\left\{ \begin{array}{l}x – 2y \le 0\\x + 3y \ge – 2\end{array} \right..\) B. \(\left\{ \begin{array}{l}x – 2y > 0\\x + 3y < – 2\end{array} \right..\) C. \(\left\{ \begin{array}{l}x – 2y \le 0\\x + 3y \le – 2\end{array} \right..\) D. \(\left\{ \begin{array}{l}x – 2y – 2\end{array} \right..\)

Câu 7: Tam giác \(ABC\) có \(AB = 3,{\rm{ }}AC = 6\) và \(\widehat A = 60^\circ \). Tính bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\).

A. \(R = 3\). B. \(R = 3\sqrt 3 \). C. \(R = \sqrt 3 \). D. \(R = 6\).

Câu 8 Bảng biến thiên của hàm số \(y = – {x^2} + 4x – 5\) là:

A. B.

C. D.

Câu 9: Tính giá trị biểu thức \(S = {\sin ^2}15^\circ + {\cos ^2}20^\circ + {\sin ^2}75^\circ + {\cos ^2}110^\circ \).

A. \(S = 0.\) B. \(S = 1.\) C. \(S = 2.\) D. \(S = 4.\)

Câu 10: Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(P = \overrightarrow {AC} .\left( {\overrightarrow {CD} + \overrightarrow {CA} } \right).\)

A. \(P = – 1.\) B. \(P = 3{a^2}.\) C. \(P = – 3{a^2}.\) D. \(P = 2{a^2}.\)

Câu 11: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 – 2x} – \frac{1}{{\sqrt {x + 1} }}.\)

A. \({\rm{D}} = \left[ { – 1;3} \right].\) B. \({\rm{D}} = \left( { – 1;3} \right).\) C. \({\rm{D}} = ( – 1;3].\) D. \({\rm{D}} = \left[ {1;3} \right].\)

Câu 12: Cho hàm số \(y = \frac{{\sqrt {x – 3} + 10}}{{x + 5}}\). Điểm nào sau đây thuộc đồ thị hàm số:

A. \((7;1)\). B. \(( – 5;2)\). C. \((4;1,1)\). D. \((0;6)\).

Câu 13: Gọi \(G\) là trọng tâm của \(\Delta ABC\). Đặt \(\overrightarrow {GA} {\rm{\;}} = \vec a;\overrightarrow {GB} {\rm{\;}} = \vec b\). Xác định giá trị của \(m,{\mkern 1mu} {\mkern 1mu} n\) để \(\overrightarrow {BC} {\rm{\;}} = m\vec a + n\vec b\).

A. \(m = 1,{\mkern 1mu} {\mkern 1mu} n = 2\) B. \(m = {\rm{\;}} – 1,{\mkern 1mu} {\mkern 1mu} n = {\rm{\;}} – 2\) C. \(m = 2,{\mkern 1mu} {\mkern 1mu} n = 1\) D. \(m = {\rm{\;}} – 2,{\mkern 1mu} {\mkern 1mu} n = {\rm{\;}} – 1\)

Câu 14: Tam giác \(ABC\) có \(AC = 4,{\rm{ }}\widehat {BAC} = 30^\circ ,{\rm{ }}\widehat {ACB} = 75^\circ \). Tính diện tích tam giác \(ABC\).

A. \({S_{\Delta ABC}} = 8\). B. \({S_{\Delta ABC}} = 4\sqrt 3 \). C. \({S_{\Delta ABC}} = 4\). D. \({S_{\Delta ABC}} = 8\sqrt 3 \).

Câu 15: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) đồng biến trong khoảng nào sau đậy?

A. \(\left( { – \infty ;\, – \frac{b}{{2a}}} \right).\) B. \(\left( { – \frac{b}{{2a}};\, + \infty } \right).\) C. \(\left( { – \frac{\Delta }{{4a}};\, + \infty } \right).\) D. \(\left( { – \infty ;\, – \frac{\Delta }{{4a}}} \right).\)

Câu 16 Cho tam giác đều \(ABC\) có cạnh bằng \(a.\) Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {BC} .\)

A. \(\overrightarrow {AB} .\overrightarrow {BC} = {a^2}.\) B. \(\overrightarrow {AB} .\overrightarrow {BC} = \frac{{{a^2}\sqrt 3 }}{2}.\) C. \(\overrightarrow {AB} .\overrightarrow {BC} = – \frac{{{a^2}}}{2}.\) D. \(\overrightarrow {AB} .\overrightarrow {BC} = \frac{{{a^2}}}{2}.\)

Câu 17: Cho tập hợp \(A = {\rm{\{ }}x \in \mathbb{N}\left| x \right.\) là ước chung của \(36\;{\rm{v\`a }}\;{\rm{120\} }}\). Hãy liệt kê các phần tử của tập hợp \(A\).

A. \(A = \left\{ {1;2;3;4;6;12} \right\}.\) B. \(A = \left\{ {1;2;4;6;8;12} \right\}.\)

C. \(A = \left\{ {2;4;6;8;10;12} \right\}.\) D. \(A = \left\{ {1;36;120} \right\}.\)

Câu 18: Cho hai tập hợp \(A = \left\{ {0;1;2;3;4} \right\},{\rm{ }}B = \left\{ {1;3;4;6;8} \right\}.\) Mệnh đề nào sau đây đúng?

A. \(A \cap B = B.\) B. \(A \cup B = A.\) C. \(A\backslash B = \left\{ {0;2} \right\}.\) D. \(B\backslash A = \left\{ {0;4} \right\}.\)

Câu 19: Điểm \(M\left( {0; – 3} \right)\) thuộc miền nghiệm của hệ bất phương trìnhnào sau đây?

A. \(\left\{ \begin{array}{l}2x – y \le 3\\3x + 5y \le 1\end{array} \right..\) B. \(\left\{ \begin{array}{l}2x – y > 3\\3x + 5y \le – 3\end{array} \right..\)

C. \(\left\{ \begin{array}{l}2x – y > – 3\\3x + 5y \ge 8\end{array} \right..\) D. \(\left\{ \begin{array}{l}2x – y \le – 3\\3x + 5y \ge 0\end{array} \right..\)

Câu 20: Giá trị nhỏ nhất \({F_{\min }}\) của biểu thức \(F\left( {x;y} \right) = y–x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{y – 2x \le 2}\\{2y – x \ge 4}\\{x + y \le 5}\end{array}} \right.\) là

A. \({F_{\min }} = 1.\) B. \({F_{\min }} = 2.\) C. \({F_{\min }} = 3.\) D. \({F_{\min }} = 4.\)

Câu 21: Hàm số bậc hai nào sau đây có đồ thị là parabol có hoành độ đỉnh là \(\frac{5}{2}\)và đi qua \(A\left( {1; – 4} \right)\)?

A. \(y = {x^2} – 5x + 8\). B. \(y = 2{x^2} + 10x – 16\).

C. \(y = {x^2} – 5x\). D. \(y = – 2{x^2} + 5x + 1\).

Câu 22: Cho biết \(\tan \alpha = – 3.\) Giá trị của \(P = \frac{{6\sin \alpha – 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng bao nhiêu?

A. \(P = \frac{4}{3}.\) B. \(P = \frac{5}{3}.\) C. \(P = – \frac{4}{3}.\) D. \(P = – \frac{5}{3}.\)

Câu 23: Cho tam giác ABC. Trên cạnh BC lấy điểm \(D\) sao cho \(\overrightarrow {BD} {\rm{\;}} = \frac{1}{3}\overrightarrow {BC} \). Khi đó, vectơ \(\overrightarrow {AD} \) bằng

A. \(\frac{2}{3}\overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {AC} \) B. \(\frac{1}{3}\overrightarrow {AB} {\rm{\;}} + \frac{2}{3}\overrightarrow {AC} \) C. \(\overrightarrow {AB} {\rm{\;}} + \frac{2}{3}\overrightarrow {AC} \) D. \(\frac{5}{3}\overrightarrow {AB} {\rm{\;}} – \frac{1}{3}\overrightarrow {AC} \)

Câu 24: Cho hai vecto \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) bất kỳ; \(\forall k,{\mkern 1mu} {\mkern 1mu} h \in \mathbb{R}\). Khẳng định nào sau đây không đúng?

A. \(0.\vec a = 0\) B. \(k\left( {\vec a + \vec b} \right) = k\vec a + k\vec b\) C. \(k.\vec 0 = \vec 0\) D. \(h\left( {k\vec a} \right) = \left( {hk} \right)\vec a\)

Câu 25: Tam giác \(ABC\) vuông tại \(A\) có \(AB = 6\)cm, \(BC = 10\)cm. Tính bán kính \(r\) của đường tròn nội tiếp tam giác đã cho.

A. \(r = 1\) cm. B. \(r = \sqrt 2 \) cm. C. \(r = 2\) cm. D. \(r = 3\) cm.

Phần 2: Tự luận (5 điểm)

Câu 1: Hai chiếc tàu thủy cùng xuất phát từ một vị trí \(A\), đi thẳng theo hai hướng tạo với nhau góc \({60^0}\). Tàu \(B\) chạy với tốc độ \(20\) hải lí một giờ. Tàu \(C\) chạy với tốc độ \(15\) hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí (làm tròn đến số thập phân)?

Câu 2: Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn

a) \(|\overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |\overrightarrow {{\rm{MB}}} – \overrightarrow {{\rm{MC}}} |\)

b) \(|2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} | = |3\overrightarrow {{\rm{MB}}} + 2\overrightarrow {{\rm{MC}}} |\)

c) \(|4\overrightarrow {{\rm{MA}}} + \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |2\overrightarrow {{\rm{MA}}} – \overrightarrow {{\rm{MB}}} – \overrightarrow {{\rm{MC}}} |\)

Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(1; – 2)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được.

.

—– HẾT —–