Trang chủ Lớp 10 Toán lớp 10 Đề thi đề kiểm tra Toán lớp 10 - Cánh diều Đề 9 Tổng hợp 10 đề thi học kì 1 Toán 10...

Đề 9 Tổng hợp 10 đề thi học kì 1 Toán 10 Cánh diều Đề thi đề kiểm tra Toán lớp 10: I Trắc nghiệm (6 điểm) Tìm tập xác định D của hàm số y = √6 – 3x + 1/√x – 1 . A

Giải Đề 9 Tổng hợp 10 đề thi học kì 1 Toán 10 Cánh diều – Đề thi đề kiểm tra Toán lớp 10 Cánh diều.

Câu hỏi/Đề bài:

I. Trắc nghiệm (6 điểm)

Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 – 3x} + \frac{1}{{\sqrt {x – 1} }}.\)

A. \({\rm{D}} = \left[ {1;2} \right].\) B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = (1;2].\) D. \({\rm{D}} = \left[ { – 1;2} \right].\)

Câu 2: Cho mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”. Mệnh đề phủ định của mệnh đề P(x) là

A. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 < 0\)”. B. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”.

C. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. D. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”.

Câu 3: Cho hàm số \(.y = \frac{{\sqrt {x – 2} – 2}}{{x – 6}}\). Điểm nào sau đây thuộc đồ thị hàm số:

A. \((6;0)\). B. \((2; – 0,5)\). C. \((2;0,5)\). D. \((0;6)\).

Câu 4: Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:

A. \(A = \left\{ {x \in \mathbb{R}|\left| x \right| < 1} \right\}\) B. \(A = \left\{ {x \in \mathbb{Z}|6{x^2} – 7x + 1 = 0} \right\}\) C. \(A = \left\{ {x \in \mathbb{Z}|{x^2} – 4x + 2 = 0} \right\}\) D. \(A = \left\{ {x \in \mathbb{N}|{x^2} – 4x + 3 = 0} \right\}\)

Câu 5: Cho hai tập hợp \(A = \left( { – \infty ;2} \right]\) và \(B = \left( { – 3;5} \right]\). Tìm mệnh đề sai.

A. \(A \cap B = \left( { – 3;2} \right].\) B. \(A\backslash B = \left( { – \infty ; – 3} \right)\). C. \(A \cup B = \left( { – \infty ;5} \right]\). D. \(B\backslash A = \left( {2;5} \right]\).

Câu 6: Cho tập hợp: \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}.\) Số tập hợp con của tập hợp \(B\) là

A. 29 B. 30 C. 31 D. 32

Câu 7: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) nghịch biến trong khoảng nào sau đậy?

A. \(\left( { – \infty ;\, – \frac{b}{{2a}}} \right).\) B. \(\left( { – \frac{b}{{2a}};\, + \infty } \right).\) C. \(\left( { – \frac{\Delta }{{4a}};\, + \infty } \right).\) D. \(\left( { – \infty ;\, – \frac{\Delta }{{4a}}} \right).\)

Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

A. \(2{x^2} + 3y > 0\) B. \({x^2} + {y^2} < 2\) C. \(x + {y^2} \ge 0\) D. \(x + y \ge 0\)

Câu 9: Miền nghiệm của bất phương trình \(\left( {1 + \sqrt 3 } \right)x – \left( {1 – \sqrt 3 } \right)y \ge 2\) chứa điểm nào sau đây?

A. A(1;-1) B. B(-1;-1) C. C(-1;1) D. \(D\left( { – \sqrt 3 ;\sqrt 3 } \right)\)

Câu 10: (ID: 590544) Trong tam giác EFG, chọn mệnh đề đúng.

A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\)

C. \(E{F^2} = E{G^2} + F{G^2} – 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} – 2EG.FG.\cos G.\)

Câu 11: Cho hình chữ nhật ABCD có \(AB = a\) và \(AD = a\sqrt 2 \). Gọi K là trung điểm của cạnh AD. Tính \(\overrightarrow {BK} .\overrightarrow {AC} \)

A. \(\overrightarrow {BK} .\overrightarrow {AC} = \overrightarrow 0 \) B. \(\overrightarrow {BK} .\overrightarrow {AC} = – {a^2}\sqrt 2 \) C. \(\overrightarrow {BK} .\overrightarrow {AC} = {a^2}\sqrt 2 \) D. \(\overrightarrow {BK} .\overrightarrow {AC} = 2{a^2}\)

Câu 12: (ID: 590546) Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là:

A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\)

Câu 13: Hàm số bậc hai nào sau đây có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; – 4} \right)\)?

A. \(y = – {x^2} + 5x – 8\). B. \(y = – 2{x^2} + 10x – 12\).

C. \(y = {x^2} – 5x\). D. \(y = – 2{x^2} + 5x + \frac{1}{2}\).

Câu 14: Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x – 5y – 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

A. \(O\left( {0;0} \right)\) B. \(M\left( {1;0} \right)\) C. \(N\left( {0; – 2} \right)\) D. \(P\left( {0;2} \right)\)

Câu 15: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau

Phương trình của parabol này là

A. \(y = – {x^2} + x – 1\). B. \(y = 2{x^2} + 4x + 1\). C. \(y = {x^2} – 2x – 1\). D. \(y = 2{x^2} – 4x – 1\).

Câu 16: Tính bán kính r của đường tròn nội tiếp tam giác đều cạnh a.

A. \(r = \frac{{a\sqrt 3 }}{4}\) B. \(r = \frac{{a\sqrt 2 }}{5}\) C. \(r = \frac{{a\sqrt 3 }}{6}\) D. \(r = \frac{{a\sqrt 5 }}{7}\)

Câu 17: Tam giác ABC có \(AB = \sqrt 2 ,\,\,AC = \sqrt 3 \) và \(C = {45^0}\). Tính độ dài cạnh BC.

A. \(BC = \sqrt 5 \) B. \(BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\) C. \(BC = \frac{{\sqrt 6 – \sqrt 2 }}{2}\) D. \(BC = \sqrt 6 \)

Câu 18: Bảng biến thiên của hàm số \(y = – {x^2} + 2x – 1\) là:

A. B.

C. D.

Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?

A. \(\left( { – 3; + \infty } \right).\) B. \(\left( {5; + \infty } \right).\) C. \(\{ – 3;5\} \) D. \(\left( { – 3;5} \right].\)

Câu 20: Giá trị lớn nhất của hàm số \(y = – 3{x^2} + 2x + 1\) trên đoạn \(\left[ {1;3} \right]\) là:

A. \(\frac{4}{5}\) B. 0 C. \(\frac{1}{3}\) D. \( – 20\)

Câu 21: Cho hai vectơ \(\vec a\) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 3,\) \(\left| {\overrightarrow b } \right| = 2\) và \(\vec a.\vec b = – 3.\) Xác định góc \(\alpha \) giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b .\)

A. \(\alpha = {30^0}.\) B. \(\alpha = {45^0}.\) C. \(\alpha = {60^0}.\) D. \(\alpha = {120^0}.\)

Câu 22: Cho tam giác cân \(ABC\) có\(\widehat A = {120^0}\)và \(AB = AC = a\). Lấy điểm \(M\)trên cạnh \(BC\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM.\)

A. \(\frac{{a\sqrt 3 }}{3}\) B. \(\frac{{11a}}{5}\) C. \(\frac{{a\sqrt 7 }}{5}\) D. \(\frac{{a\sqrt 6 }}{4}\)

Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?

A. \(2x – y < 3\) B. \(2x – y > 3\) C. \(x – 2y < 3\) D. \(x – 2y > 3\)

Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = – 2\sqrt 2 \).

A. \( – \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\)

Câu 25: Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn cùng một điểm trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40cm, \(\angle CAB = {45^0}\), \(\angle CBA = {70^0}\). Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?

A. 53 m B. 30 m C. 41,5 m D. 41 m

Câu 26: Cho hình vuông ABCD cạnh \(a\), \(M\) là điểm thay đổi. Độ dài véctơ \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} – 3\overrightarrow {MD} \) là:

A. \(4a\sqrt 2 \) B. \(a\sqrt 2 \) C. \(3a\sqrt 2 \) D. \(2a\sqrt 2 \)

Câu 27: Cho tam giác ABC đều cạnh a, G là trọng tâm. Mệnh đề nào sau đây sai?

A. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) B. \(\overrightarrow {AC} .\overrightarrow {CB} = – \frac{1}{2}{a^2}.\) C. \(\overrightarrow {GA} .\overrightarrow {GB} = \frac{1}{6}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AG} = \frac{1}{2}{a^2}.\)

Câu 28: Cho bốn điểm A,B,C,D phân biệt. Khi đó, \(\overrightarrow {AB} {\rm{ \;}} – \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} – \overrightarrow {AD} \) bằng véctơ nào sau đây?

A. \(\vec 0\) B. \(\overrightarrow {BD} \) C. \(\overrightarrow {AC} \) D. \(2\overrightarrow {DC} \)

Câu 29: Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

A. \(\overrightarrow {AC} {\rm{ \;}} = \overrightarrow {BD} \) B. \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \vec 0\)

C. \(\left| {\overrightarrow {AB} {\rm{ \;}} – \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} } \right|\) D. \(\left| {\overrightarrow {BC} {\rm{ \;}} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} {\rm{ \;}} – \overrightarrow {AB} } \right|\)

Câu 30: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\).

A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\)

II. Tự luận (4 điểm)

Câu 1: Cho ba lực \(\overrightarrow {{F_1}} {\rm{\;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{\;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{\;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M. Tìm hướng và cường độ lực \(\overrightarrow {{F_3}} \)

Câu 2: Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận, người ta lấy hai điểm A và B trên mặt đất có khoảng cách \(AB = 12m\) , cùng thẳng hàng với chân C của tháp để đặt giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm \({A_1},{B_1}\) cùng thẳng hàng với \({C_1}\) thuộc chiều cao CD của tháp. Người ta đo được \(\widehat {D{A_1}{C_1}} = {49^ \circ }\) và \(\widehat {D{B_1}{C_1}} = {35^ \circ }\). Tính chiều cao CD của tháp đó.

Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(2;3)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được.

—–HẾT—–