Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{(ax)^k}{b^{n – k}}\) Do đó hệ số của \({x^k}\. Hướng dẫn giải Giải bài 2.11 trang 37 Chuyên đề học tập Toán 10 – Kết nối tri thức – Bài 4. Nhị thức Newton – Chuyên đề học tập Toán 10 Kết nối tri thức. Tìm hệ số của \({x^8}\) trong khai triển của \({\left( {2x + 3} \right)^{10}}\…
Đề bài/câu hỏi:
Tìm hệ số của \({x^8}\) trong khai triển của \({\left( {2x + 3} \right)^{10}}\)
Hướng dẫn:
Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{(ax)^k}{b^{n – k}}\)
Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{a^k}{b^{n – k}}\)
Lời giải:
Số hạng chứa \({x^k}\) trong khai triển của \({\left( {2x + 3} \right)^{10}}\) là \(C_{10}^{10 – k}{(2x)^k}{3^{10 – k}}\)
Số hạng chứa \({x^8}\) ứng với \(k = 8\), tức là số hạng \(C_{10}^2{(2x)^8}{3^2}\) hay \(103680{x^8}\)
Vậy hệ số của \({x^8}\) trong khai triển của \({\left( {2x + 3} \right)^{10}}\) là \(103680.\)