Hướng dẫn giải Luyện tập Bài 2. Hypebol (trang 50, 51) – Chuyên đề học tập Toán 10 Cánh diều. Hướng dẫn: Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0, b > 0\).
Câu hỏi/Đề bài:
Viết phương trình chính tắc của hypebol có một đỉnh là \({A_2}\left( {5;0} \right)\) và một đường tiệm cận là \(y = – 3x\)
Hướng dẫn:
Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ 2 đỉnh là \({A_1}\left( { – a;0} \right),{A_2}\left( {a;0} \right)\)
+ Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = – \frac{b}{a}x,y = \frac{b}{a}x\)
Lời giải:
+ Ta có hypebol có đỉnh \({A_2}(a;0) = \left( {5;0} \right) \Rightarrow a = 5\)
+ Hypebol có đường tiệm cận là \(y = – 3x \Rightarrow \frac{b}{a} = 3 \Rightarrow b = 3a = 15\)
Vậy phương trình hypebol là: \(\frac{{{x^2}}}{{{5^2}}} – \frac{{{y^2}}}{{{{15}^2}}} = 1\)