Trang chủ Lớp 10 Toán lớp 10 Chuyên đề học tập Toán 10 - Cánh diều Hoạt động 1 Bài 1 (trang 39, 40) Chuyên đề học tập...

Hoạt động 1 Bài 1 (trang 39, 40) Chuyên đề học tập Toán 10: Trong mặt phẳng tọa độ Oxy, ta xét Elip E có phương trình chính tắc là: x^2/a^2 + y^2/b^2 = 1, trong đó a > b > 0

Đáp án Hoạt động 1 Bài 1. Elip (trang 39, 40) – Chuyên đề học tập Toán 10 Cánh diều. Hướng dẫn: Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\.

Câu hỏi/Đề bài:

Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) (Hình 2)

a) Tìm tọa độ của hai tiêu điểm \({F_1},{F_2}\) của \(\left( E \right)\)

b) \(\left( E \right)\) cắt trục \(Ox\) tịa các điểm \({A_1},{A_2}\) và cắt trục \(Oy\) tịa các điểm \({B_1},{B_2}\). Tìm độ dài các đoạn thẳng \(O{A_2},O{B_2}\)

Hướng dẫn:

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

+ 4 đỉnh là \({A_1}\left( { – a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; – b} \right),{B_2}\left( {0;b} \right).\)

Lời giải:

Elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\) có 4 đỉnh \({A_1}\left( { – a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; – b} \right),{B_2}\left( {0;b} \right).\)

\( \Rightarrow O{A_2} = a;O{B_2} = b\)