Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + . . . Vận dụng kiến thức giải Giải bài 3 trang 37 Chuyên đề học tập Toán 10 – Cánh diều – Bài 2. Nhị thức Newton – Chuyên đề học tập Toán 10 Cánh diều. Chứng minh \(C_n^0{3^n} + C_n^1{3^{n – 1}} + … + C_n^k{3^{n – k}} + ……
Đề bài/câu hỏi:
Chứng minh \(C_n^0{3^n} + C_n^1{3^{n – 1}} + … + C_n^k{3^{n – k}} + … + C_n^{n – 1}3 + C_n^n\)
\( = C_n^03 + C_n^13 + … + C_n^k{3^k} + … + C_n^{n – 1}{3^{n – 1}} + C_n^n{.3^n}\) với \(0 \le k \le n,n \in \mathbb{N}\)
Hướng dẫn:
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)
Lời giải:
Áp dụng công thức nhị thức Newton ta có:
\({\left( {a + b} \right)^n} = C_n^0.{a^n}.{b^0} + C_n^1{a^{n – 1}}.{b^1} + … + C_n^k{a^{n – k}}.{b^k} + … + C_n^{n – 1}a.{b^{n – 1}} + C_n^n.{a^0}.{b^n}\)
Thay \(a = 3,b = 1\) ta được
\(\begin{array}{l} \Leftrightarrow {\left( {3 + 1} \right)^n} = C_n^0{.3^n}{.1^0} + C_n^1{3^{n – 1}}{.1^1} + … + C_n^k{3^{n – k}}{.1^k} + … + C_n^{n – 1}{3.1^{n – 1}} + C_n^n{.3^0}{.1^n}\\ \Rightarrow {4^n} = C_n^0{3^n} + C_n^1{3^{n – 1}} + … + C_n^k{3^{n – k}} + … + C_n^{n – 1}3 + C_n^n\end{array}\)
Thay \(a = 1,b = 3\) ta được
\(\begin{array}{l}{\left( {1 + 3} \right)^n} = C_n^0{.1^n}{.3^0} + C_n^1{1^{n – 1}}{.3^1} + … + C_n^k{1^{n – k}}{.3^k} + … + C_n^{n – 1}{1.3^{n – 1}} + C_n^n{.1^0}{.3^n}\\ \Rightarrow {4^n} = C_n^03 + C_n^13 + … + C_n^k{3^k} + … + C_n^{n – 1}{3^{n – 1}} + C_n^n{.3^n}\end{array}\)
Suy ra điều phải chứng minh