Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}. {x_2}\). Giải và trình bày phương pháp giải Giải bài 8 trang 24 vở thực hành Toán 9 tập 2 – . Tìm m để phương trình ({x^2} + 4x + m = 0) có hai nghiệm ({x_1},…
Đề bài/câu hỏi:
Tìm m để phương trình \({x^2} + 4x + m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
Hướng dẫn:
+ Tìm điều kiện của m để phương trình đã cho có nghiệm và viết định lí Viète để tính \({x_1} + {x_2};{x_1}.{x_2}\).
+ Biến đổi \(x_1^2 + x_2^2 = \left( {x_1^2 + 2{x_1}{x_2} + x_2^2} \right) – 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} = 10\).
+ Thay \({x_1} + {x_2};{x_1}.{x_2}\) đã tính theo định lí Viète vào biểu thức vừa biến đổi, ta được phương trình ẩn m, từ đó tìm m, đối chiếu với điều kiện của m và đưa ra kết luận.
Lời giải:
Phương trình có nghiệm khi \(\Delta ‘ = 4 – m \ge 0\), tức là \(m \le 4\). Khi đó, phương trình có hai nghiệm \({x_1},{x_2}\). Theo định lí Viète ta có: \({x_1} + {x_2} = – 4;{x_1}.{x_2} = m\).
Do đó:
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} \\= {\left( { – 4} \right)^2} – 2m = 16 – 2m = 10\)
suy ra, \(2m = 6\), hay \(m = 3\) (thỏa mãn điều kiện để phương trình có nghiệm).
Vậy với \(m = 3\) thì phương trình đã cho có hai nghiệm thỏa mãn yêu cầu đề bài.