Trang chủ Lớp 9 Toán lớp 9 Vở thực hành Toán 9 Bài 7 trang 124 vở thực hành Toán 9 tập 2: Một...

Bài 7 trang 124 vở thực hành Toán 9 tập 2: Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít ba quả bóng bàn có cùng bán kính R xếp theo chiều ngang như hình dưới đây

Tổng diện tích ba quả bóng bàn \({S_1} = 3. 4\pi {R^2}\). + Tính chiều cao hình hộp \(h = 3. 2R = 6R\). Hướng dẫn giải Giải bài 7 trang 124 vở thực hành Toán 9 tập 2 – . Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít ba quả bóng bàn có cùng bán kính…

Đề bài/câu hỏi:

Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít ba quả bóng bàn có cùng bán kính R xếp theo chiều ngang như hình dưới đây. Gọi \({S_1}\) là tổng diện tích của ba quả bóng bàn, \({S_2}\) là diện tích xung quanh của vỏ hộp hình trụ. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).

Hướng dẫn:

+ Tổng diện tích ba quả bóng bàn \({S_1} = 3.4\pi {R^2}\).

+ Tính chiều cao hình hộp \(h = 3.2R = 6R\).

+ Tính diện tích xung quanh của vỏ hộp hình trụ: \({S_2} = 2\pi Rh\).

+ Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).

Lời giải:

Tổng diện tích của ba quả bóng bàn là

\({S_1} = 3.4\pi {R^2} = 12\pi {R^2}\left( {c{m^2}} \right)\).

Chiều cao của hộp hình trụ là: \(h = 3.2R = 6R\).

Diện tích xung quanh của vỏ hộp hình trụ là:

\({S_2} = 2\pi Rh = 2\pi R.6R = 12\pi {R^2}\left( {c{m^2}} \right)\)

Vì vậy \(\frac{{{S_1}}}{{{S_2}}} = \frac{{12\pi {R^2}}}{{12\pi {R^2}}} = 1\).