Trang chủ Lớp 9 Toán lớp 9 Vở thực hành Toán 9 Bài 5 trang 64 vở thực hành Toán 9: Rút gọn và...

Bài 5 trang 64 vở thực hành Toán 9: Rút gọn và tính giá trị của biểu thức √[3]27x^3 – 27x^2 + 9x – 1 tại x = 7

Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số. Giải chi tiết Giải bài 5 trang 64 vở thực hành Toán 9 – Bài 10. Căn bậc ba và căn thức bậc ba. Rút gọn và tính giá trị của biểu thức (sqrt[3]{{27{x^3} – 27{x^2} + 9x – 1}}) tại (x = 7)….

Đề bài/câu hỏi:

Rút gọn và tính giá trị của biểu thức \(\sqrt[3]{{27{x^3} – 27{x^2} + 9x – 1}}\) tại \(x = 7\).

Hướng dẫn:

Ta có \({\left( {\sqrt[3]{A}} \right)^3} = \sqrt[3]{{{A^3}}} = A\) với A là một biểu thức đại số.

Lời giải:

Vì \(27{x^3} – 27{x^2} + 9x – 1 \)

\(= {\left( {3x} \right)^3} – 3.{\left( {3x} \right)^2}.1 + 3.3x{.1^2} – {1^3}\)

\(= {\left( {3x – 1} \right)^3}\) nên

\(\sqrt[3]{{27{x^3} – 27{x^2} + 9x – 1}} = \sqrt[3]{{{{\left( {3x – 1} \right)}^3}}} = 3x – 1\)

Giá trị căn thức tại \(x = 7\) là \(3.7 – 1 = 20\).