Các bước giải một bài toán bằng cách lập phương trình: Bước 1. Lập phương trình. Lời giải Giải bài 10 trang 38 vở thực hành Toán 9 tập 2 – . Một người đi xe máy từ A đến B với vận tốc và thời gian dự định….
Đề bài/câu hỏi:
Một người đi xe máy từ A đến B với vận tốc và thời gian dự định. Sau khi đi được \(\frac{1}{3}\) quãng đường AB với vận tốc đã dự định, trên quãng đường còn lại người đó đi với vận tốc lớn hơn vận tốc dự định 10km/ giờ. Tính vận tốc và thời gian dự định, biết rằng quãng đường AB dài 120km và người đó đã đến hơn dự định 24 phút.
Hướng dẫn:
Các bước giải một bài toán bằng cách lập phương trình:
Bước 1. Lập phương trình:
– Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
– Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải:
Đổi 24 phút \( = \frac{2}{5}\) giờ.
Gọi vận tốc dự định là x (km/ giờ) \(\left( {x > 0} \right)\), thì thời gian dự định là \(\frac{{120}}{x}\) (giờ).
Thời gian xe đi trên \(\frac{1}{3}\) quãng đường đầu là \(\frac{1}{3}.\frac{{120}}{x} = \frac{{40}}{x}\) (giờ).
Vận tốc xe đi trên quãng đường sau là: \(x + 10\) (km/h).
Thời gian xe đi hết quãng đường còn lại là \(\frac{{80}}{{x + 10}}\) (giờ).
Vì người đó đến B sớm hơn dự định 24 phút nên ta có phương trình:
\(\frac{{120}}{x} – \frac{{40}}{x} – \frac{{80}}{{x + 10}} = \frac{2}{5}\), hay \({x^2} + 10x – 2000 = 0\)
Giải phương trình này ta được: \(x = 40\) (thỏa mãn điều kiện) hoặc \(x = – 50\) (loại).
Vậy vận tốc dự định là 40km/h và thời gian dự định là 3 giờ.