Đáp án Câu hỏi Luyện tập 1 trang 86 SGK Toán 9 Kết nối tri thức – Bài 30. Đa giác đều. Gợi ý: Chứng minh \(\Delta AMK = \Delta BMN = \Delta CPN = \Delta DPQ = \Delta EKQ\left( {c. g.
Câu hỏi/Đề bài:
Cho M, N, P, Q, K lần lượt là trung điểm của các cạnh AB, BC, CD, DE và EA của ngũ giác đều ABCDE (H.9.44). Hỏi MNPQK có phải là ngũ giác đều hay không?
Hướng dẫn:
+ Chứng minh \(\Delta AMK = \Delta BMN = \Delta CPN = \Delta DPQ = \Delta EKQ\left( {c.g.c} \right)\) nên \(KM = MN = PN = PQ = QK\).
+ Chứng minh được \(\widehat {KMA} = \widehat {BMN}\) và \(\widehat {KMA} + \widehat {KMN} + \widehat {BMN} = {180^o} \Rightarrow \widehat {KMN} = {180^o} – 2\widehat {KMA}\).
+ Chứng minh tương tự ta có: \(\widehat {NPQ} = \widehat {PQK} = \widehat {QKM} = {180^o} – 2\widehat {KMA}\). Do đó, đa giác MNPQK là ngũ giác đều.
Lời giải:
Vì ABCDE là ngũ giác đều nên \(AB = BC = CD = DE = EA\), \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)
Vì M, N, P, Q, K lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EA.
Do đó, \(AM = MB = NB = NC = CP = PD = DQ = QE = EK = KA\)
Ta có: \(AM = MB = NB = NC = CP = PD = DQ = QE = EK = KA\) và \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)
Suy ra: \(\Delta AMK = \Delta BMN = \Delta CPN = \Delta DPQ = \Delta EKQ\left( {c.g.c} \right)\)
Do đó: + \(KM = MN = PN = PQ = QK\left( 1 \right)\).
+ \(\widehat {KMA} = \widehat {AKM} = \widehat {BMN} = \widehat {MNB} = \widehat {CNP} = \widehat {CPN} = \widehat {DPQ} = \widehat {DQP} = \widehat {EQK} = \widehat {EKQ}\)
Ta có: \(\widehat {KMA} + \widehat {KMN} + \widehat {BMN} = {180^o}\) (các góc kề bù)
Mà \(\widehat {KMA} = \widehat {BMN}\) nên \(\widehat {KMN} = {180^o} – 2\widehat {KMA}\).
Vì \(\widehat {BNM} + \widehat {MNP} + \widehat {PNC} = {180^o}\) (các góc kề bù)
Mà \(\widehat {KMA} = \widehat {BNM} = \widehat {PNC}\) nên \(\widehat {MNP} = {180^o} – 2\widehat {KMA}\).
Chứng minh tương tự ta có:
\(\widehat {NPQ} = \widehat {PQK} = \widehat {QKM} = {180^o} – 2\widehat {KMA}\)
Do đó, \(\widehat {KMN} = \widehat {MNP} = \widehat {NPQ} = \widehat {PQK} = \widehat {QKM}\left( 2 \right)\)
Từ (1) và (2) suy ra: MNPQK là ngũ giác đều.