Dựa vào tính chất: Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\. Gợi ý giải Giải bài tập 6 trang 51 SGK Toán 9 tập 1 – Chân trời sáng tạo – Bài 3. Tính chất của phép khai phương. Rút gọn các biểu thức sau: a) \(\frac{{\sqrt 5 .\sqrt 6 }}{{\sqrt {10} }}\) b) \(\frac{{\sqrt {24{a^3}} }}{{\sqrt {6a} }}\…
Đề bài/câu hỏi:
Rút gọn các biểu thức sau:
a) \(\frac{{\sqrt 5 .\sqrt 6 }}{{\sqrt {10} }}\)
b) \(\frac{{\sqrt {24{a^3}} }}{{\sqrt {6a} }}\) với a > 0
c) \(\sqrt {\frac{{3{a^2}b}}{{27}}} \) với \(a \le 0;b \ge 0\)
Hướng dẫn:
Dựa vào tính chất: Với biểu thức A không âm và biểu thức B dương, ta có:
\(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\)
Lời giải:
a) \(\frac{{\sqrt 5 .\sqrt 6 }}{{\sqrt {10} }} = \frac{{\sqrt {30} }}{{\sqrt {10} }} = \sqrt {\frac{{30}}{{10}}} = \sqrt 3 \)
b) \(\frac{{\sqrt {24{a^3}} }}{{\sqrt {6a} }} = \sqrt {\frac{{24{a^3}}}{{6a}}} = \sqrt {4{a^2}} = 2a\) với a > 0
c) \(\sqrt {\frac{{3{a^2}b}}{{27}}} = \sqrt {\frac{{{a^2}b}}{9}} = \frac{{\sqrt {{a^2}b} }}{{\sqrt 9 }} = \frac{{ – a\sqrt b }}{3}\) với \(a \le 0;b \ge 0\)