Đọc kĩ dữ kiện đề bài để vẽ hình. – Dựa vào. Giải chi tiết Giải bài tập 4 trang 80 SGK Toán 9 tập 2 – Chân trời sáng tạo – Bài 3. Đa giác đều và phép quay. Cho đường tròn (O; R). a) Vẽ hình tam giác đều, hình vuông,…
Đề bài/câu hỏi:
Cho đường tròn (O; R).
a) Vẽ hình tam giác đều, hình vuông, hình lục giác đều có các đỉnh nằm trên (O; R).
b) Tính các cạnh của các hình vừa vẽ theo R.
Hướng dẫn:
– Đọc kĩ dữ kiện đề bài để vẽ hình.
– Dựa vào: Đa giác lồi có các cạnh bằng nhau và các góc bằng nhau gọi là đa giác đều.
– Dựa vào đường tròn ngoại tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác và bán kính bằng \(\frac{{a\sqrt 3 }}{3}\).
– Dựa vào: Đường tròn ngoại tiếp hình chữ nhật, hình vuông có tâm là giao điểm của hai đường chéo và có bán kính bằng nửa đường chéo.
Lời giải:
a)
b) Tam giác đều nội tiếp đường tròn nên ta có:
R = \(\frac{{a\sqrt 3 }}{3}\) (a là độ dài cạnh tam giác đều)
Suy ra a = \(\frac{{3R}}{{\sqrt 3 }} = R\sqrt 3 \)
Hình vuông nội tiếp đường tròn nên ta có:
\(R = \frac{d}{2}\) (d là đường chéo của hình vuông)
Suy ra d = 2R. Gọi x là độ dài cạnh hình vuông hay \(\sqrt {{x^2} + {x^2}} = 2R\) suy ra \(x\sqrt 2 = 2R\)
Hay x = \(\frac{{2R}}{{\sqrt 2 }} = R\sqrt 2 \)
Trong lục giác đều có khoảng cách từ tâm đến các đỉnh là bằng nhau (= R); các góc ở tâm đều bằng 60o nên lục giác đều gồm 6 tam giác đều.
Suy ra độ dài cạnh của lục giác đều là R.