Trang chủ Lớp 9 Toán lớp 9 SBT Toán 9 - Cánh diều Bài 43 trang 122 SBT toán 9 – Cánh diều tập 1:...

Bài 43 trang 122 SBT toán 9 – Cánh diều tập 1: Cho hình chữ nhật ABCD với AB = 10cm. Vẽ hai nửa đường tròn tâm O đường kính AB và tâm O’ đường kính CD cắt nhau tại P, Q

Bước 1: Chứng minh OPO’Q là hình vuông và cạnh hình vuông. Bước 2. Lời giải bài tập, câu hỏi Giải bài 43 trang 122 sách bài tập toán 9 – Cánh diều tập 1 – Bài 5. Độ dài cung tròn – diện tích hình quạt tròn – diện tích hình vành khuyên. Cho hình chữ nhật ABCD với AB = 10cm….

Đề bài/câu hỏi:

Cho hình chữ nhật ABCD với AB = 10cm. Vẽ hai nửa đường tròn tâm O đường kính AB và tâm O’ đường kính CD cắt nhau tại P, Q. Biết rằng đường tròn tâm H đường kính PQ tiếp xúc với AB và CD (Hình 47). Tính diện tích phần chung của hai nửa đường tròn (O), (O’).

Hướng dẫn:

Bước 1: Chứng minh OPO’Q là hình vuông và cạnh hình vuông.

Bước 2: Diện tích cần tìm = diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O) + diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O’).

Trong đó:

Diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O) = diện tích quạt tròn OPQ – diện tích tam giác OPQ.

Diện tích phần tạo bởi dây PQ và cung nhỏ PQ của (O’) = diện tích quạt tròn O’PQ – diện tích tam giác O’PQ.

Lời giải:

Ta có: O là tâm đường tròn đường kính AB nên \(OA = OB = OP = OQ = \frac{{AB}}{2} = \frac{{10}}{2} = 5\)cm.

Ta lại có: O’ là tâm đường tròn đường kính CD nên \(O’C = O’D = O’P = O’Q = \frac{{CD}}{2}\)

Mà \(AB = CD\) (do ABCD là hình chữ nhật), suy ra \(OP = OQ = O’P = O’Q\).

Có: AB, CD tiếp xúc với (H), \(OH \bot AB\)tại O tại O’, do đó O và O’ là tiếp điểm của 2 tiếp tuyến AB và CD của (H), hay \(O \in (H),O’ \in (H)\).

Diện tích tam giác OPQ là:

\(\frac{1}{2}OP.OQ = \frac{1}{2}5.5 = \frac{{25}}{2}\)(cm2)

Diện tích hình quạt tròn OPQ của (O) là

\(\frac{{\pi {{.5}^2}.90}}{{360}} = \frac{{25\pi }}{4}\)(cm2)

Diện tích hình tạo bởi dây PQ và cung nhỏ PQ của (O) là:

\(\frac{{25\pi }}{4} – \frac{{25}}{2} = \frac{{25}}{4}\left( {\pi – 2} \right)\)(cm2)

Diện tích tam giác O’PQ là:

\(\frac{1}{2}OP.OQ = \frac{1}{2}5.5 = \frac{{25}}{2}\)(cm2)

Diện tích hình quạt tròn O’PQ của (O’) là

\(\frac{{\pi {{.5}^2}.90}}{{360}} = \frac{{25\pi }}{4}\) (cm2)

Diện tích hình tạo bởi dây PQ và cung nhỏ PQ của (O’) là:

\(\frac{{25\pi }}{4} – \frac{{25}}{2} = \frac{{25}}{4}\left( {\pi – 2} \right)\) (cm2)

Vậy diện tích phần chung của 2 nửa đường tròn (O) và (O’) là:

\(2.\frac{{25}}{4}\left( {\pi – 2} \right) = \frac{{25}}{2}\left( {\pi – 2} \right)\) (cm2)